【題目】在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).

(1)求直線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線為曲線關(guān)于直線的對(duì)稱曲線,點(diǎn)分別為曲線、曲線上的動(dòng)點(diǎn),點(diǎn)坐標(biāo)為,求的最小值.

【答案】(1)見解析;(2)6.

【解析】試題分析: (1)利用進(jìn)行代換,即可得出直線的直角坐標(biāo)方程,利用消去參數(shù)可得曲線的普通方程;(2) 點(diǎn)在直線上,根據(jù)對(duì)稱性,的最小值與的最小值相等,求出點(diǎn)P到圓心的距離減去半徑即可.

試題解析:

(1)∵,∴,

,∴直線的直角坐標(biāo)方程為;

,∴曲線的普通方程為.

(2) ∵點(diǎn)在直線上,根據(jù)對(duì)稱性,的最小值與的最小值相等,

曲線是以為圓心,半徑的圓.

,

的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象與過原點(diǎn)的直線恰有四個(gè)交點(diǎn),設(shè)四個(gè)交點(diǎn)中橫坐標(biāo)最大值為,則( )

A. B. C. 0 D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知直線與雙曲線交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4.

(1)求的值及B點(diǎn)坐標(biāo);

(2)結(jié)合圖形,直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值時(shí)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種熱飲需用開水沖泡,其基本操作流程如下:①先將水加熱到100,水溫與時(shí)間近似滿足一次函數(shù)關(guān)系;②用開水將熱飲沖泡后在室溫下放置,溫度與時(shí)間近似滿足函數(shù)的關(guān)系式為 為常數(shù)), 通常這種熱飲在40時(shí),口感最佳,某天室溫為時(shí),沖泡熱飲的部分?jǐn)?shù)據(jù)如圖所示,那么按上述流程沖泡一杯熱飲,并在口感最佳時(shí)飲用,最少需要的時(shí)間為

A. 35 B. 30

C. 25 D. 20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式,對(duì)滿足的一切實(shí)數(shù)都成立,則實(shí)數(shù)的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為為參數(shù)),M上的動(dòng)點(diǎn),P點(diǎn)滿足,點(diǎn)P的軌跡為曲線

I)求的方程;

II)在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點(diǎn)的交點(diǎn)為A,與的異于極點(diǎn)的交點(diǎn)為B,求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)已知橢圓的離心率為,橢圓的短軸端點(diǎn)與雙曲線的焦點(diǎn)重合,過點(diǎn)且不垂直于軸的直線與橢圓相交于兩點(diǎn).

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為提高服務(wù)質(zhì)量,隨機(jī)調(diào)查了50名男顧客和50名女顧客,每位顧客對(duì)該商場(chǎng)的服務(wù)給出滿意或不滿意的評(píng)價(jià),得到下面列聯(lián)表:

滿意

不滿意

男顧客

40

10

女顧客

30

20

1)分別估計(jì)男、女顧客對(duì)該商場(chǎng)服務(wù)滿意的概率;

2)能否有95%的把握認(rèn)為男、女顧客對(duì)該商場(chǎng)服務(wù)的評(píng)價(jià)有差異?

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎(jiǎng)促銷活動(dòng),消費(fèi)每超過600元(含600元),均可抽獎(jiǎng)一次,抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種.

方案一:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,一次性摸出3個(gè)球,其中獎(jiǎng)規(guī)則為:若摸到3個(gè)紅球,享受免單優(yōu)惠;若摸出2個(gè)紅球則打6折,若摸出1個(gè)紅球,則打7折;若沒摸出紅球,則不打折.

方案二:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.

(1)若兩個(gè)顧客均分別消費(fèi)了600元,且均選擇抽獎(jiǎng)方案一,試求兩位顧客均享受免單優(yōu)惠的概率;

(2)若某顧客消費(fèi)恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎(jiǎng)方案更合算?

查看答案和解析>>

同步練習(xí)冊(cè)答案