已知,函數(shù)f(x)=a•b+|b|2
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)時,求函數(shù)f(x)的值域.
【答案】分析:(1)先根據(jù)向量的數(shù)量積表示出函數(shù)f(x)的解析式后化簡為y=Asin(wx+ρ)的形式,根據(jù)T=可得答案.
(2)先根據(jù)x的范圍求出2x+的范圍,再由三角函數(shù)的性質(zhì)可得答案.
解答:解:(1)
f(x)=a•b+|b|2=2sinxcosx+2cos2x=sin2x+cos2x+1
=2(sin2x+cos2x)+1=2sin(2x+)+1
∴T=
(2)∵,∴
∴sin(2x+)∈[-,1],∴2sin(2x+)+1∈[0,3]
∴函數(shù)f(x)的值域?yàn)閇0,3]
點(diǎn)評:本題主要考查三角函數(shù)最小正周期的求法和單調(diào)區(qū)間的求法.一般都是把函數(shù)先化簡為y=Asin(wx+ρ)或y=Acos(wx+ρ)的形式再由三角函數(shù)的圖象和性質(zhì)可解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在(-∞,0)∪(0,+∞)上有意義,且在(0,+∞)上是減函數(shù),f(1)=0,又有函數(shù)g(θ)=sin2θ+mcosθ-2m,θ∈[0,
π2
],若集合M={m|g(θ)<0},集合N={m|f[g(θ)]>0}.
(1)解不等式f(x)>0;
(2)求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)的定義域?yàn)椋?1,1),當(dāng)x∈(0,1)時,f(x)=
2x2x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判斷f(x)在(0,1)上的單調(diào)性,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)f(x)=xa的圖象過點(diǎn)(
1
2
2
2
)
,則f(x)在(0,+∞)單調(diào)遞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在區(qū)間(a,b)上是減函數(shù),證明f(x)在區(qū)間(-b,-a)上仍是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)=x3-6x2+3x+t,t∈R.
(1)①證明:a3-b3=(a-b)(a2+ab+b2
②求函數(shù)f(x)兩個極值點(diǎn)所對應(yīng)的圖象上兩點(diǎn)之間的距離;
(2)設(shè)函數(shù)g(x)=exf(x)有三個不同的極值點(diǎn),求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案