證明時(shí),假設(shè)當(dāng)時(shí)成立,則當(dāng)時(shí),左邊增加的項(xiàng)數(shù)為(    )
A.B.C.D.
D
解:n=k時(shí),不等式的左邊等于 1+1 /2 +1 /3 +1 /4 +…+1 /(2k-1) ,且 k∈N+,
當(dāng)n=k+1時(shí),不等式的左邊等于 1+1 /2 +1/ 3 +1/ 4 +…+1 /2k-1 +(1 /2k +1 /(2k+1) +1/ (2k +2) +…+1 /(2k +2k -1 )),
當(dāng)n=k+1時(shí),不等式的左邊比n=k時(shí)增加的向?yàn)? /2k +1 /(2k+1) +1/ (2k +2) +…+1 /(2k +2k -1 ) ,共增加了 2k項(xiàng).
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)函數(shù)數(shù)列滿足:
(1)求;
(2)猜想的表達(dá)式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(11分)探究:是否存在常數(shù)a、b、c使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c)
對對一切正自然數(shù)n均成立,若存在求出a、bc,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)證明:能夠被6整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在圓內(nèi):畫1條弦,把圓分成2部分;畫2條相交的弦,把圓分成4部分,畫3條兩兩相交的弦,把圓最多分成7部分;…,畫條兩兩相交的弦,把圓最多分成            部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明命題時(shí),此命題左式為,則n=k+1與n=k時(shí)相比,左邊應(yīng)添加(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明不等式的過程中,由遞推到時(shí)的不等式左邊.
A.增加了項(xiàng)
B.增加了項(xiàng)
C.增加了“”,又減少了“
D.增加了,減少了“

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

用數(shù)學(xué)歸納法證明某命題時(shí),左式為(n為正偶數(shù)),從“n=2k”到“n=2k+2”左邊需增加的代數(shù)式為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列,計(jì)算,猜想的表達(dá)式,并用數(shù)學(xué)歸納法證明猜想的正確性

查看答案和解析>>

同步練習(xí)冊答案