精英家教網 > 高中數學 > 題目詳情

【題目】某市氣象站觀測點記錄的連續(xù)天里,指數(空氣質量指數)與當天的空氣水平可見度(單位cm)的情況如下表1:

表1

該市某月指數頻數分布如下表2:

表2

頻數

(1)設,根據表1的數據,求出關于的回歸方程;

(參考公式:;其中,

(2)小張開了一家洗車店,經統(tǒng)計,當不高于時,洗車店平均每天虧損約元;當時,洗車店平均每天收入月元;當大于時,洗車店平均每天收入約元;根據表估計小張的洗車店該月份平均每天的收入.

【答案】(1)(2)元.

【解析】分析:(1)利用公式計算平均數與線性回歸方程系數,即可求得線性回歸方程;

(2)確定每月的收入的取值及概率,從而可求分布列及數學期望

詳解:(1)

,

(2)由表2知指數不高于的頻率為,

指數在的頻率為

指數大于的頻率為

設每月的收入為,則的分布列為:

的數學期望為.

即小張的洗車店該月平均每天的收入為元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)x2(x1)|xa|.

(1)a=-1,解方程f(x)1;

(2)若函數f(x)R上單調遞增,求實數a的取值范圍;

(3)是否存在實數a,使不等式f(x)≥2x3對任意xR恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,PA⊥底面ABCD,AD||BC,AD⊥CD,BC=2,AD=CD=1,MPB的中點.

(1)求證:AM||平面PCD;

(2)求證:平面ACM⊥平面PAB;

(3)若PC與平面ACM所成角為30°,PA的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】小趙和小王約定在早上之間到某公交站搭乘公交車去上學,已知在這段時間內,共有班公交車到達該站,到站的時間分別為,,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學的概率為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某家庭進行理財投資,根據長期收益率市場預測,投資債券等穩(wěn)健型產品的收益與投資額成正比,投資股票等風險型產品的收益與投資額的算術平方根成正比.已知投資1萬元時兩類產品的收益分別為0.125萬元和0.5萬元。

(1)分別寫出兩類產品的收益與投資額的函數關系式;

(2)該家庭現有20萬元資金,全部用于理財投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】.口袋中有質地、大小完全相同的5個球,編號分別為12,34,5,甲、乙兩人玩一種游戲:甲先摸出一個球,記下編號,放回后乙再摸一個球,記下編號,如果兩個編號的和為偶數算甲贏,否則算乙贏.

)求甲贏且編號的和為6的事件發(fā)生的概率;

)這種游戲規(guī)則公平嗎?試說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱臺中, 側面與側面是全等的梯形,若,且.

(Ⅰ)若, ,證明: ∥平面;

(Ⅱ)若二面角,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,ABCDA1B1C1D1是長方體,OB1D1的中點,直線A1C交平面AB1D1于點M,則下列結論正確是( )

A.A,MO三點共線B.A,MO,A1不共面

C.A,MC,O不共面D.B,B1,OM共面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,一輛汽車從A市出發(fā)沿海岸一條筆直公路以的速度向東勻速行駛,汽車開動時,在A市南偏東方向距A500km且與海岸距離為300km的海上B處有一艘快艇與汽車同時出發(fā),要把一份文件交給這輛汽車的司機.

1)快艇至少以多大的速度行駛才能把文件送到司機手中?

2)求快艇以最小速度行駛時的行駛方向與所成角的大。

3)若快艇每小時最快行駛,快艇應如何行駛才能盡快把文件交到司機手中?最快需多長時間?

查看答案和解析>>

同步練習冊答案