已知函數(shù)f(x)=sin(x+
π
12
).
(1)求f(-
π
4
)的值;
(2)若cosθ=
4
5
,θ∈(0,
π
2
),求f(2θ-
π
3
).
考點:兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:(1)把x=-
π
4
代入函數(shù)解析式即可.
(2)根據(jù)函數(shù)解析式求得f(2θ-
π
3
)的表達式并利用兩角和公式整理,根據(jù)cosθ的值,求得sinθ的值,進而根據(jù)二倍角公式分別求得sin2θ和cos2θ的值,代入f(2θ-
π
3
)的解析式.
解答: 解:(1)f(-
π
4
)=sin(-
π
4
+
π
12
)=sin(-
π
6
)=-
1
2

(2)f(2θ-
π
3
)=sin(2θ-
π
3
+
π
12
)=sin(2θ-
π
4
)=
2
2
(sin2θ-cos2θ),
因為cosθ=
4
5
,θ∈(0,
π
2
),所以sinθ=
3
5
,
所以sin2θ=2sinθcosθ=
24
25
,cos2θ=cos2θ-sin2θ=
7
25
,
所以f(2θ-
π
3
)=
2
2
(sin2θ-cos2θ)=(
24
25
-
7
25
)×
2
2
=
17
2
50
點評:本題主要考查了兩角和公式和二倍角公式的應(yīng)用.考查了學(xué)生對基礎(chǔ)知識的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ<
π
2
)的部分圖象如圖.
(Ⅰ)求f(x)的解析式;
(Ⅱ)將函數(shù)y=f(x)的圖象上所有點的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的
1
2
倍,再將所得函數(shù)圖象向右平移
π
6
個單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:指數(shù)函數(shù)y=(m2-5m+7)x在R上單調(diào)遞增;命題q:y=lg(x2+2mx+m)的定義域為R,若“p∨q”為真命題,若“p∧q”為假命題.求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知A,B分別是橢圓E:
x2
a2
+
y2
b2
=1,(a>b>0)的右頂點和上頂點,|OA|=2,點M為線段AB中點,直線OM交橢圓于C,D兩點(其中O為坐標(biāo)原點),△ABC與△ABD的面積分別記為S1,S2
(1)當(dāng)橢圓E的離心率e=
1
2
時,求橢圓E的方程;
(2)當(dāng)橢圓E的離心率變變化時,
S1
S2
是否為定值?若是求出該定值,若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2為橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點,過F2做橢圓的弦AB,若△AF1B 的周長是16,橢圓的離心率e=
3
2

(1)求橢圓的標(biāo)準(zhǔn)方程;       
(2)若∠F1AF2=90°,求△F1AF的面積S;
(3)已知P(2,1)是橢圓內(nèi)一點,在橢圓上求一點Q,使得
3
PQ+2QF2最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(π+α)=
4
5
,α為第三象限角.
(1)求sinα,tanα的值;
(2)求sin(α+
π
4
),tan2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=(2-a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x)
(Ⅰ)當(dāng)a=1時,求函數(shù)y=
x
g(x)
的圖象上斜率為-2的切線方程;
(Ⅱ)當(dāng)a<-2時,求f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)-3<a<-2時,若存在λ1,λ2∈[1,3],使得|f(λ1)-f(λ2)|>(m+ln3)a-2ln3成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=[x]+|sin
πx
2
|,x∈[-1,1].其中[x]表示不超過x的最大整數(shù),例如[-3.5]=-4,[2.1]=2.
(Ⅰ)試判斷函數(shù)f(x)的奇偶性,并說明理由;
(Ⅱ)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,且
2
x
+
1
y
=4,則x+2y最小值是
 

查看答案和解析>>

同步練習(xí)冊答案