【題目】已知的頂點坐標分別是的外接圓為.

1)求圓的方程;

2)在圓上是否存在點,使得?若存在,求點的個數(shù):若不存在,說明理由;

3)在圓上是否存在點,使得?若存在,求點的個數(shù):若不存在,說明理由.

【答案】(1) ;(2) 存在點,且有2; (3) 存在點,且有2.

【解析】

(1)設(shè)外接圓的方程為三點代入圓的方程,列出方程組,求得的值,即可得到圓的方程;

(2)設(shè)點的坐標為,由化簡得,利用直線與圓的關(guān)系,即可求解.

(3) 設(shè)點的坐標為,化簡得,利用圓與圓的位置關(guān)系判斷,即可求解.

(1)設(shè)外接圓的方程為三點代入圓的方程得: ,解得: ,即圓的方程為即為;

(2)設(shè)點的坐標為,由所以化簡得:, 即考查直線與圓的位置關(guān)系, 到直線的距離為,所以直線與圓相交,故滿足條件的點有兩個.

(3) 設(shè)點的坐標為,所以化簡得,圓心距為,所以兩圓相交, 故滿足條件的點有兩個.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).

(1)將, 的方程化為普通方程,并說明它們分別表示什么曲線?

(2)以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,已知直線的極坐標方程為.若上的點對應的參數(shù)為,點上,點的中點,求點到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020122日,國新辦發(fā)布消息:新型冠狀病毒來源于武漢一家海鮮市場非法銷售的野生動.專家通過全基因組比對發(fā)現(xiàn)此病毒與2003年的非典冠狀病毒以及此后的中東呼吸綜合征冠狀病毒,分別達到70%40%的序列相似性.這種新型冠狀病毒對人們的健康生命帶來了嚴重威脅因此,某生物疫苗研究所加緊對新型冠狀病毒疫苗進行實驗,并將某一型號疫苗用在動物小白鼠身上進行科研和臨床實驗,得到統(tǒng)計數(shù)據(jù)如下:

未感染病毒

感染病毒

總計

未注射疫苗

20

注射疫苗

30

總計

50

50

100

現(xiàn)從所有試驗小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.

1)求列聯(lián)表中的數(shù)據(jù),的值;

2)能否有99.9%把握認為注射此種疫苗對預防新型冠狀病毒有效?

附:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形垂直于直角梯形,,中點,,.

1)求證:∥平面;

2)線段上是否存在點,使與平面所成角的正切值為?若存在,請求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,求函數(shù)的極值;

2)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

3)若對內(nèi)任意一個,都有 成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球n個,已知從袋子中隨機抽取1個小球,取到標號為2的小球的概率是.

(1)n的值;

(2)從袋子中不放回地隨機抽取2個球,記第一次取出小球標號為a,第二次取出的小球標號為b.①ab2”為事件A,求事件A的概率;

在區(qū)間[0,2]內(nèi)任取2個實數(shù)x,y,求事件x2y2>(ab)2恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當年產(chǎn)量不足80千件時,C(x)x210x(萬元).當年產(chǎn)量不小于80千件時,C(x)51x1 450(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.

1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;

2)當年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過雙曲線的右支上一點,分別向圓和圓作切線,切點分別為,,則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線與圓相切,圓心的坐標為

1)求圓的方程;

2)設(shè)直線與圓沒有公共點,求的取值范圍;

3)設(shè)直線與圓交于兩點,且,求的值.

查看答案和解析>>

同步練習冊答案