【題目】設(shè)函數(shù) 是定義在 上的單調(diào)函數(shù),且對(duì)于任意正數(shù) ,已知 ,若一個(gè)各項(xiàng)均為正數(shù)的數(shù)列 滿足 ,其中 是數(shù)列 的前 項(xiàng)和,則數(shù)列 中第18項(xiàng) ( )
A.
B.9
C.18
D.36

【答案】C
【解析】∵f(Sn)=f(an)+f(an+1)-1=f[ an(an+1)]∵函數(shù)f(x)是定義域在(0,+∞)上的單調(diào)函數(shù),數(shù)列{an}各項(xiàng)為正數(shù)∴Sn= an(an+1)①當(dāng)n=1時(shí),可得a1=1;當(dāng)n≥2時(shí),Sn-1= an-1(an-1+1)②,①-②可得an= an(an+1)- an-1(an-1+1)∴(an+an-1)(an-an-1-1)=0 ∵an0 , ∴an-an-1-1=0即an-an-1=1∴數(shù)列{an}為等差數(shù)列,a1=1,d=1;∴an=1+(n-1)×1=n即an=n所以
所以答案是:C
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等差數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí),掌握通項(xiàng)公式:,以及對(duì)數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于橢圓 ,有如下性質(zhì):若點(diǎn) 是橢圓上的點(diǎn),則橢圓在該點(diǎn)處的切線方程為 .利用此結(jié)論解答下列問(wèn)題.
(Ⅰ)求橢圓 的標(biāo)準(zhǔn)方程;
(Ⅱ)若動(dòng)點(diǎn) 在直線 上,經(jīng)過(guò)點(diǎn) 的直線 與橢圓 相切,切點(diǎn)分別為 .求證直線 必經(jīng)過(guò)一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的 值為11,則判斷框中的條件可以是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex-ex(x∈R,且e為自然對(duì)數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的單調(diào)性與奇偶性;
(2)是否存在實(shí)數(shù)t , 使不等式f(xt)+f(x2t2)≥0對(duì)一切x∈R都成立?若存在,求出t;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(Ⅰ)若 的極值點(diǎn),求 的值;
(Ⅱ)若 單調(diào)遞增,求 的取值范圍.
(Ⅲ)當(dāng) 時(shí),方程 有實(shí)數(shù)根,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若f(x)的圖象與直線y=kx有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),分別求函數(shù)的最小值和的最大值,并證明當(dāng)時(shí), 成立;

(3)令,當(dāng)時(shí),判斷函數(shù)有幾個(gè)不同的零點(diǎn)并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐P-ABC中,平面PAC平面ABC, ABC=,點(diǎn)D、E在線段AC上,且AD=DE=EC=2,PD=PC=4,點(diǎn)F在線段AB上,且EF//BC.

(Ⅰ)證明:AB平面PFE.

(Ⅱ)若四棱錐P-DFBC的體積為7,求線段BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案