如圖,直線AB過圓心O,交于F(不與B重合),直線與相切于C,交AB于E,且與AF垂直,垂足為G,連結(jié)AC
求證:(1);(2)
(1)證明過程詳見解析;(2)證明過程詳見解析
解析試題分析:本題主要考查以圓為背景考查角相等的證明及相似三角形等基礎(chǔ)知識(shí),考查學(xué)生的轉(zhuǎn)化能力和推理論證能力 第一問,通過AB為直徑,所以為直角,又因?yàn)镚C切⊙O于C,所以,所以得證;第二問,利用EC與⊙O相切,得出,所以三角形相似得與相似,利用相似三角形的性質(zhì),得出比例值,化簡即可,得證
試題解析:(1)連結(jié),∵是直徑,
∴,∴
∵切于,∴
∴ 5分
(2)連結(jié),∵切于, ∴
又, ∴
∴,∴ 10分
考點(diǎn):1 圓的切線的性質(zhì);2 相似三角形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,PA為⊙O的切線,A為切點(diǎn),PBC是過點(diǎn)O的割線,PA=10,PB=5。
求:(1)⊙O的半徑;
(2)s1n∠BAP的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知在⊙O中,P是弦AB的中點(diǎn),過點(diǎn)P作半徑OA的垂線,垂足是點(diǎn)E.分別交⊙O于C、D兩點(diǎn).
求證:PC·PD=AE·AO.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知Rt△ABC的周長為48 cm,一銳角平分線分對邊為3∶5兩部分.
(1)求直角三角形的三邊長;
(2)求兩直角邊在斜邊上的射影的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在?ABCD中,設(shè)E和F分別是邊BC和AD的中點(diǎn),BF和DE分別交AC于P、Q兩點(diǎn).
求證:AP=PQ=QC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB為⊙O的直徑,直線CD與⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,連接AE,BE.證明:
(1)∠FEB=∠CEB;
(2)EF2=AD·BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,A、B是兩圓的交點(diǎn),AC是小圓的直徑,D和E分別是CA和CB的延長線與大圓的交點(diǎn),已知AC=4,BE=10,且BC=AD,求DE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,、是圓的半徑,且,是半徑上一點(diǎn):延長交圓于點(diǎn),過作圓的切線交的延長線于點(diǎn).求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com