經(jīng)過(guò)圓的圓心C,且與直線垂直的直線方程是 (   )
A.x+y+1=0B.x+y-1=0C.x-y+1=0D.x-y-1=0
C
分析:先求圓心,再求斜率,可求直線方程.
解答:解:易知點(diǎn)C為(-1,0),而直線與x+y=0垂直,所以待求直線的斜率為1,我們?cè)O(shè)待求的直線的方程為y=x+b,將點(diǎn)C的坐標(biāo)代入馬上就能求出參數(shù)b的值為b=1,故待求的直線的方程為x-y+1=0.
故答案為: C
點(diǎn)評(píng):明確直線垂直的判定,會(huì)求圓心坐標(biāo),再求方程,是一般解題思路.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,F(xiàn)是定直線l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l交于A、B兩點(diǎn),過(guò)A、B分別作l的垂線與圓

C過(guò)F的切線交于點(diǎn)P和點(diǎn)Q,則P、Q必在以F為焦點(diǎn),l為準(zhǔn)線的同一條拋物線上.
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線的方程;
(Ⅱ)對(duì)以上結(jié)論的反向思考可以得到另一個(gè)命題:
“若過(guò)拋物線焦點(diǎn)F的直線與拋物線交于P、Q兩點(diǎn),
則以PQ為直徑的圓一定與拋物線的準(zhǔn)線l相切”請(qǐng)
問(wèn):此命題是否正確?試證明你的判斷;
(Ⅲ)請(qǐng)選擇橢圓或雙曲線之一類比(Ⅱ)寫(xiě)出相應(yīng)的命題并
證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為評(píng)分依據(jù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知向量
a
,
b
是相互垂直的單位向量,且|
c
|=13,
c
a
=3
c
b
=4
,則對(duì)于任意的實(shí)數(shù)t1,t2,|
c
-t1
a
-t2
b
|的最小值為( 。
A.5B.7C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)設(shè)點(diǎn)F(0,2),曲線C上任意一點(diǎn)M(x,y)滿足以線段FM為直徑的圓與x 軸相切.
(1)求曲線C的方程;
(2)設(shè)過(guò)點(diǎn)Q(0,-2)的直線l與曲線C交于A,B兩點(diǎn),問(wèn)|FA|,|AB|,|FB|能否成等差數(shù)列?若能,求出直線l的方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(幾何證明選講選做題) 如圖4,是圓外一點(diǎn),直線與圓相交于,是圓的切線,切點(diǎn)為、。若,則四邊形的面積      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知,則的最大值為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
設(shè)圓滿足條件:(1)截y軸所得的弦長(zhǎng)為2;(2)被x軸分成兩段弧,其弧長(zhǎng)的比為3︰1;(3)圓心到直線的距離為.求這個(gè)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

:如圖所示,ACAB分別是圓O的切線,B、C為切點(diǎn),OC = 3,AB = 4,延長(zhǎng)OAD點(diǎn),則△ABD的面積是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)是雙曲線上一點(diǎn),、是它的左、右焦點(diǎn),若,則雙曲線的離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案