【題目】設(shè)a>0, 是R上的函數(shù),且滿足f(﹣x)=f(x),x∈R.
(1)求a的值;
(2)證明f(x)在(0,+∞)上是增函數(shù).

【答案】
(1)解:取x=1,則f(﹣1)=f(1),即

,

,

,∴

∴a2=1.

又a>0,∴a=1


(2)證明:由(1)知

設(shè)0<x1<x2,則

=

=

= <0.

∴f(x1)<f(x2).

∴f(x)在(0,+∞)上是增函數(shù)


【解析】(1)取x=1,則f(﹣1)=f(1),化簡(jiǎn)即可解出.(2)利用單調(diào)遞增函數(shù)的定義即可證明.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí),掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較,以及對(duì)函數(shù)奇偶性的性質(zhì)的理解,了解在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,值域是(0,+∞)的是(
A.y=( 1x
B.y=x2
C.y=5
D.y=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的傾斜角為且經(jīng)過點(diǎn)以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為.

1)若直線與曲線有公共點(diǎn),求的取值范圍;

(2)設(shè)為曲線上任意一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| |= ,求證: ;
(2)設(shè)c=(0,1),若 + =c,求α,β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A={x|a≤x≤2a﹣4},B={x|x2﹣5x﹣6<0},若A∩B=A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)判斷并證明函數(shù)f(x)在其定義域上的奇偶性;
(2)證明函數(shù)f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩城相距,在兩城之間距處建一核電站給兩城供電,為保證城市安全,核電站距城市距離不得小于 .已知供電費(fèi)用等于供電距離的平方與供電量(億度)之積的倍,若城供電量為每月20億度,城供電量為每月10億度.

(1)把月供電總費(fèi)用表示成的函數(shù);

(2)核電站建在距城多遠(yuǎn),才能使供電總費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】海上某貨輪在A處看燈塔B在貨輪的北偏東75°,距離為12海里;在A處看燈塔C在貨輪的北偏西30°,距離為8海里;貨輪向正北由A處行駛到D處時(shí)看燈塔B在貨輪的北偏東120°.(要畫圖)
(1)A處與D處之間的距離;
(2)燈塔C與D處之間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案