【題目】若函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),且f′(x)=sin2x﹣ cos2x,則下列說法正確的是(
A.y=f(x)的周期為
B.y=f(x)在[0, ]上是減函數(shù)
C.y=f(x)的圖象關(guān)于直線x= 對(duì)稱
D.y=f(x)是偶函數(shù)

【答案】B
【解析】解:∵f′(x)=sin2x﹣ cos2x,
∴f(x)=﹣ cos2x﹣ sin2x+c,(c是常數(shù))
則f(x)=﹣cos(2x﹣ )+c,
則函數(shù)的周期T= ,故A錯(cuò)誤;
當(dāng)0≤x≤ 時(shí),0≤2x≤ ,﹣ ≤2x﹣ ≤0,此時(shí)y=cos(2x﹣ )為增函數(shù),y=﹣cos(2x﹣ )+c為減函數(shù),故B正確;
∵f( )=﹣cos(2× )+c=﹣cos +c不是最值,
∴y=f(x)的圖象關(guān)于直線x= 不對(duì)稱,故C錯(cuò)誤;
∵f(0)=﹣cos(﹣ )+c不是最值,
∴函數(shù)f(x)關(guān)于x=0不對(duì)稱,則函數(shù)f(x)不是偶函數(shù),
故D錯(cuò)誤.
故選:B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解命題的真假判斷與應(yīng)用(兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系),還要掌握基本求導(dǎo)法則(若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo))的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù)2,,如表所示:

試銷單價(jià)

4

5

6

7

8

9

產(chǎn)品銷量

90

84

83

80

q

68

已知

求表格中q的值;

已知變量x,y具有線性相關(guān)性,試?yán)米钚《朔ㄔ,求產(chǎn)品銷量y關(guān)于試銷單價(jià)x的線性回歸方程參考數(shù)據(jù)

中的回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值記為2,,當(dāng)時(shí),則稱為一個(gè)“理想數(shù)據(jù)”試確定銷售單價(jià)分別為4,5,6時(shí)有哪些是“理想數(shù)據(jù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商品要了解年廣告費(fèi)(單位:萬元)對(duì)年銷售額(單位:萬元)的影響,對(duì)近4年的年廣告費(fèi)和年銷售額數(shù)據(jù)作了初步整理,得到下面的表格:

用廣告費(fèi)作解釋變量,年銷售額作預(yù)報(bào)變量,若認(rèn)為適宜作為年銷售額關(guān)于年廣告費(fèi)的回歸方程類型,則

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;

(2)已知商品的年利潤(rùn)的關(guān)系式為.根據(jù)(1)的結(jié)果,年廣告費(fèi)約為何值時(shí)(小數(shù)點(diǎn)后保留兩位),年利潤(rùn)的預(yù)報(bào)值最大?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】能被3整除,且構(gòu)成每個(gè)數(shù)的數(shù)碼只限于1、2、3(1、2、3可以不全部用到)的所有小于200000的不同自然數(shù)個(gè)數(shù)是_____________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在實(shí)數(shù)a,使得不等式f(x)≥1﹣a+2|2+x|成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,平面SAB⊥底面ABCD,且SA=SB= ,AD=1,AB=2,BC=3.

(1)求證:SB⊥平面SAD;
(2)求二面角D﹣SC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)分別是正方體的棱上兩點(diǎn),且,給出下列四個(gè)命題:①三棱錐的體積為定值;②異面直線所成的角為;③平面;④直線與平面所成的角為.其中正確的命題為( )

A. ①② B. ②③ C. ①②④ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國(guó)許多省市霧霾天氣頻發(fā),為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),某市面向全市征召名義務(wù)宣傳志愿者,成立環(huán)境保護(hù)宣傳組織,現(xiàn)把該組織的成員按年齡分成組第,第,第,第,第,得到的頻率分布直方圖如圖所示,已知第組有人.

(1)求該組織的人數(shù);

(2)若在第組中用分層抽樣的方法抽取名志愿者參加某社區(qū)的宣傳活動(dòng),應(yīng)從第組各抽取多少名志愿者?

(3)在(2)的條件下,該組織決定在這名志愿者中隨機(jī)抽取名志愿者介紹宣傳經(jīng)驗(yàn),求第組至少有名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)P是平行四邊形ABCD所在平面外一點(diǎn),M、N分別是AB、PC的中點(diǎn).

(1)求證:MN∥平面PAD;

(2)在PB上確定一個(gè)點(diǎn)Q,使平面MNQ∥平面PAD.

查看答案和解析>>

同步練習(xí)冊(cè)答案