已知二次函數(shù)f(x)滿足f(x+1)=x2+x+1,當(dāng)x∈[-1,2]時,不等式:f(x)>2x+m恒成立,則實數(shù)m的范圍為
 
分析:欲求實數(shù)m的范圍,先求出函數(shù)f(x)的表達式,再從f(x)>2x+m分離出參數(shù)m,最后轉(zhuǎn)化成m只要小于一個式子的最小值即可.
解答:解:∵f(x+1)=x2+x+1,
∴f(x)=x2-x+1,
∴不等式:f(x)>2x+m恒成立
即:m<x2-3x+1,恒成立
又∵當(dāng)x∈[-1,2]時,x2-3x+1的最小值為:-
5
4
,
∴實數(shù)m的范圍為:(-∞,-
5
4
)

故答案為:(-∞,-
5
4
)
點評:本小題主要考查一元二次不等式的應(yīng)用、函數(shù)的解析式、恒成立問題等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經(jīng)過原點,且滿足f(2)=0,求實數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達式;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結(jié)論給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點是(-1,2),且經(jīng)過原點,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案