設(shè)命題P:|m-5|≤3;命題Q:函數(shù)f(x)=3x2+2mx+m+
4
3
有兩個(gè)不同的零點(diǎn).求使命題“P或Q”為真命題的實(shí)數(shù)M的取值范圍.
∵|m-5|≤3⇒2≤m≤8
命題P為真時(shí),2≤m≤8
∵函數(shù)f(x)有兩個(gè)不同的零點(diǎn),∴△=4m2-12(m+
4
3
)>0⇒m>4或m<-1
命題Q為真時(shí),m>4或m<-1,

由復(fù)合命題真值表知:“P或Q”為真命題,則P、Q至少一個(gè)為真;
若P、Q都真,4<m≤8,
若P、Q一真一假,(-∞,-1)∪[2,4]∪(8,+∞),
∴PⅤQ為真命題 m∈{m|m≥2或m<-1}
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

命題:“若不為零,則都不為零”的逆否命題是                       。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題p:關(guān)于a的不等式a+3≥
m2+8
對?m∈[-1,1]
恒成立;命題q:關(guān)于x的方程x2-ax+1=0有實(shí)數(shù)解,若命題“p且q”為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題p:方程(2x-a)(x+a)=0的兩個(gè)根都在[-1,1]上;命題q:對任意實(shí)數(shù)x,不等式x2+2ax+2a≥0恒成立,若命題“p∧q”是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果命題p∨q是真命題,命題¬p是假命題,那么( 。
A.命題p一定是假命題
B.命題q一定是假命題
C.命題q一定是真命題
D.命題q是真命題或假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

命題“若ab=0,則a=0或b=0”的逆否命題是( 。
A.若ab≠0,則a≠0或b≠0B.若a≠0或b≠0,則ab≠0
C.若ab≠0,則a≠0且b≠0D.若a≠0且b≠0,則ab≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知命題p:存在x∈(-∞,0),2x<3x;命題q:△ABC中,若sinA>sinB,則A>B,則下列命題為真命題的是( 。
A.p且qB.p或(﹁q)C.(﹁p)且qD.p且(﹁q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知命題p:?x0∈R,
1
x0
>x0,命題q:?x∈R,x2>0,則命題p∨q,p∧q,p∨(¬q),p∧(¬q)中真命題有______個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知a>0,a≠1,設(shè)p:函數(shù)y=logax在(0,+∞)上單調(diào)遞減,q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).若“p且q”為假,“﹁q”為假,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案