【題目】已知函數(shù)f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.設(shè)H1(x)=max,H2(x)=min (max表示p,q中的較大值,min表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則A-B=( )
A.16B.-16
C.a2-2a-16D.a2+2a-16
【答案】B
【解析】
先作差得到h(x)=f(x)﹣g(x)=2(x﹣a)2﹣8.分別解出h(x)=0,h(x)>0,h(x)<0.畫(huà)出圖形,利用新定義即可得出H1(x),H2(x).進(jìn)而得出A,B即可.
令h(x)=f(x)﹣g(x)=x2﹣2(a+2)x+a2﹣[﹣x2+2(a﹣2)x﹣a2+8]=2x2﹣4ax+2a2﹣8=2(x﹣a)2﹣8.
①由2(x﹣a)2﹣8=0,解得x=a±2,此時(shí)f(x)=g(x);
②由h(x)>0,解得x>a+2,或x<a﹣2,此時(shí)f(x)>g(x);
③由h(x)<0,解得a﹣2<x<a+2,此時(shí)f(x)<g(x).
綜上可知:
(1)當(dāng)x≤a﹣2時(shí),則H1(x)=max{f(x),g(x)}=f(x)=[x﹣(a+2)]2﹣4a﹣4,
H2(x)=min{f(x),g(x)}=g(x)=﹣[x﹣(a﹣2)]2﹣4a+12,
(2)當(dāng)a﹣2≤x≤a+2時(shí),H1(x)=max{f(x),g(x)}=g(x),H2(x)=min{f(x),g(x)}=f(x);
(3)當(dāng)x≥a+2時(shí),則H1(x)=max{f(x),g(x)}=f(x),H2(x)=min{f(x),g(x)}=g(x),
故A=g(a+2)=﹣[(a+2)﹣(a﹣2)]2﹣4a+12=﹣4a﹣4,B=g(a﹣2)=﹣4a+12,
∴A﹣B=﹣4a﹣4﹣(﹣4a+12)=﹣16.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】光線(xiàn)從橢圓的一個(gè)焦點(diǎn)發(fā)出,被橢圓反射后會(huì)經(jīng)過(guò)橢圓的另一個(gè)焦點(diǎn);光線(xiàn)從雙曲線(xiàn)的一個(gè)焦點(diǎn)發(fā)出,被雙曲線(xiàn)反射后的反射光線(xiàn)等效于從另一個(gè)焦點(diǎn)射出.如圖,一個(gè)光學(xué)裝置由有公共焦點(diǎn),的橢圓與雙曲線(xiàn)構(gòu)成,現(xiàn)一光線(xiàn)從左焦點(diǎn)發(fā)出,依次經(jīng)與反射,又回到了點(diǎn),歷時(shí)秒;若將裝置中的去掉,此光線(xiàn)從點(diǎn)發(fā)出,經(jīng)兩次反射后又回到了點(diǎn),歷時(shí)秒;若,則與的離心率之比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),且離心率為.過(guò)拋物線(xiàn)上一點(diǎn)作的切線(xiàn)交橢圓于,兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線(xiàn),使得,若存在,求出的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知M(x1,y1)是橢圓=1(a>b>0)上任意一點(diǎn),F為橢圓的右焦點(diǎn).
(1)若橢圓的離心率為e,試用e,a,x1表示|MF|,并求|MF|的最值;
(2)已知直線(xiàn)m與圓x2+y2=b2相切,并與橢圓交于A、B兩點(diǎn),且直線(xiàn)m與圓的切點(diǎn)Q在y軸右側(cè),若a=4,求△ABF的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正四面體P-ABC中,D、E、F分別是AB、BC、CA的中點(diǎn),下列四個(gè)結(jié)論不成立的是 ( )
A. BC∥平面PDF B. DF⊥平面PAE
C. 平面PDF⊥平面PAE D. 平面PDE⊥平面ABC
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)四邊形的頂點(diǎn)在橢圓上,且對(duì)角線(xiàn)、過(guò)原點(diǎn),若,求證;四邊形的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下給出五個(gè)命題,其中真命題的序號(hào)為______
①函數(shù)在區(qū)間上存在一個(gè)零點(diǎn),則的取值范圍是或;
②“任意菱形的對(duì)角線(xiàn)一定相等”的否定是“菱形的對(duì)角線(xiàn)一定不相等”;
③,;
④若,則;
⑤“”是“成等比數(shù)列”的充分不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)若,求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)若,求證:有且僅有兩個(gè)零點(diǎn);
(3)若為整數(shù),且當(dāng)時(shí),恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最大值為, 的圖像關(guān)于軸對(duì)稱(chēng).
(1)求實(shí)數(shù), 的值.
(2)設(shè),則是否存在區(qū)間,使得函數(shù)在區(qū)間上的值域?yàn)?/span>?若存在,求實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com