已知定義域為R的函數(shù)y=f(x)在(1,+∞)上是增函數(shù),且函數(shù)y=f(x+1)是偶函數(shù),那么( )
A.f(O)<f(-1)<f(4)
B.f(0)<f(4)<f(-1)
C.f(4)<f(=1)<f(0)
D.f(-1)<f(O)<f(4)
【答案】分析:由y=f(x+1)是偶函數(shù),結(jié)合偶函數(shù)的性質(zhì)及函數(shù)圖象的平移可知y=f(x)的圖象關(guān)于x=1對稱,從而根據(jù)對稱性把f(-1),f(0),f(4)轉(zhuǎn)化到同一單調(diào)區(qū)間上即可比較大小
解答:解:∵把函數(shù)y=f(x)向左平移1個單位可得函數(shù)y=f(x+1)的圖象
又∵y=f(x+1)是偶函數(shù),則由偶函數(shù)的性質(zhì)可知,其函數(shù)的圖象關(guān)于y軸對稱
∴y=f(x)的圖象關(guān)于x=1對稱,f(-1)=f(3),f(0)=f(2)
∵y=f(x)在(1,+∞)上是增函數(shù)
∴f(4)>f(3)>f(2)
即f(-4)>f(-1)>f(0)
故選A
點評:本題主要考查了偶函數(shù)的對稱性及函數(shù)圖象的平移的應用,解題的關(guān)鍵是利用對稱性把所要比較的式子轉(zhuǎn)化到同一單調(diào)區(qū)間.