函數(shù)y=loga(x+2)-1(a>0,且a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中mn>0,則
1
m
+
1
n
的最小值為
 
考點:對數(shù)函數(shù)的圖像與性質
專題:函數(shù)的性質及應用,不等式的解法及應用
分析:根據(jù)對數(shù)函數(shù)的性質先求出A的坐標,代入直線方程可得m、n的關系,再利用1的代換結合均值不等式求解即可.
解答: 解:∵x=-1時,y=loga1-1=-1,
∴函數(shù)y=loga(x+2)-1(a>0,a≠1)的圖象恒過定點(-1,-1),
即A(-1,-1),
∵點A在直線mx+ny+1=0上,
∴-m-n+1=0,即m+n=1,
∵mn>0,
∴m>0,n>0,
1
m
+
1
n
=(
1
m
+
1
n
)(m+n)=2+(
n
m
+
m
n
)≥2+2
n
m
m
n
=2+2=4,
當且僅當m=n=
1
2
時取等號,
故答案為:4
點評:本題考查了對數(shù)函數(shù)的性質和均值不等式等知識點,運用了整體代換思想,是高考考查的重點內(nèi)容.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2ax-a+2
(1)若對于任意x∈R,f(x)≥0恒成立,求實數(shù)a的取值范圍;
(2)若對于任意x∈[-1,1],f(x)≥0恒成立,求實數(shù)a的取值范圍;
(3)若對于任意a∈[-1,1],x2+2ax-a+2>0恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=k(x+2)與圓O:x2+y2=2交于A、B兩點,若|AB|=2則實數(shù)k的值為( 。
A、±
3
3
B、±
2
2
C、±
2
D、±
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列選項中的兩個函數(shù)具有相同值域的有(  )個
①f(x)=x+1,g(x)=x+2;②f(x)=
x+1
,g(x)=
x+2
;
③f(x)=x2+1,g(x)=x2+2;④f(x)=
x2
x2+1
,g(x)=
x2
x2+2
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax-2+loga(x-1)+1(a>0,a≠1)的圖象必經(jīng)過點
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個口袋內(nèi)裝有大小相等的1個白球和3個黑球,從中摸出2個球,求:
(1)基本事件總數(shù);
(2)事件“摸出2個黑球”包含哪些基本事件;
(3)摸出2個黑球的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a=log 
1
2
2,b=log 
1
2
1
3
,c=(
1
2
0.3,則( 。
A、a<c<b
B、a<b<c
C、b<c<a
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“若x∈(1,10),a=(lgx)2,b=lgx2,c=lg(lgx),則a,b,c的大小順序為( 。
A、c<a<b
B、a<c<b
C、b<c<a
D、a<b<c(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某單位有職工80人,其中業(yè)務人員56人,管理人員8人,服務人員16人.為了了解職工的某種情況,決定采用分層抽樣的方法抽取一個容量為10的樣本,則業(yè)務人員應抽取( 。
A、1人B、2人C、7人D、8人

查看答案和解析>>

同步練習冊答案