【題目】表示mn中的最大值,如.已知函數(shù).

1)設(shè),求函數(shù)上的零點(diǎn)個(gè)數(shù);

2)試探討是否存在實(shí)數(shù),使得對(duì)恒成立?若存在,求a的取值范圍;若不存在,說(shuō)明理由.

【答案】1)2;(2)存在,.

【解析】

1)利用導(dǎo)數(shù)求出的單調(diào)區(qū)間及最值,結(jié)合圖像即可判定;(2)構(gòu)造函數(shù),對(duì)該函數(shù)在的最大值進(jìn)行分類討論求解,只需要最大值小于0即可.

1)設(shè),則.

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;

,所以,即,所以.

設(shè),結(jié)合上的圖象可知,

這兩個(gè)函數(shù)的圖象在內(nèi)有兩個(gè)交點(diǎn),

上的零點(diǎn)個(gè)數(shù)為2(或由方程內(nèi)有兩根可得).

2)假設(shè)存在實(shí)數(shù),使得對(duì)恒成立,

對(duì)恒成立,

對(duì)恒成立,

①設(shè),則

當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減.

所以,

當(dāng)時(shí),,所以,因?yàn)?/span>,所以,

故當(dāng)時(shí),對(duì)恒成立;

當(dāng),即時(shí),上遞減,

所以.

因?yàn)?/span>,所以,

故當(dāng)時(shí),對(duì)恒成立.

②若對(duì)恒成立,

,

所以.

由①②得,.

故存在實(shí)數(shù),使得對(duì)恒成立,且a的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,過(guò)點(diǎn)F,斜率為1的直線與拋物線C交于點(diǎn)A,B,且

(1)求拋物線C的方程;

(2)過(guò)點(diǎn)Q(1,1)作直線交拋物線C于不同于R(1,2)的兩點(diǎn)D、E,若直線DR,ER分別交直線于M,N兩點(diǎn),求|MN|取最小值時(shí)直線DE的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)若在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;

2)①設(shè),求的最小值;

②定義:對(duì)于函數(shù)定義域上的任意實(shí)數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)隔離直線”.設(shè),試探究是否存在隔離直線?若存在,求出隔離直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn),圓,過(guò)點(diǎn)的直線交圓兩點(diǎn),過(guò)點(diǎn)作直線交直線點(diǎn),

1)求點(diǎn)的軌跡方程;

2)若是曲線上不重合的四個(gè)點(diǎn),且交于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是( 。

A.2017年第一季度GDP增速由高到低排位第5的是浙江。

B.與去年同期相比,2017年第一季度的GDP總量實(shí)現(xiàn)了增長(zhǎng).

C.2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1個(gè)

D.去年同期河南省的GDP總量不超過(guò)4000億元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)求函數(shù)的極大值.

2)當(dāng)時(shí),證明函數(shù)有且只有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018115日至10日,首屆中國(guó)國(guó)際進(jìn)口博覽會(huì)在國(guó)家會(huì)展中心(上海)舉行,吸引了58個(gè)一帶一路沿線國(guó)家的超過(guò)1000多家企業(yè)參展,成為共建一帶一路的又一個(gè)重要支撐.某企業(yè)為了參加這次盛會(huì),提升行業(yè)競(jìng)爭(zhēng)力,加大了科技投入.該企業(yè)連續(xù)6年來(lái)的科技投入(百萬(wàn)元)與收益(百萬(wàn)元)的數(shù)據(jù)統(tǒng)計(jì)如下:

科技投入

2

4

6

8

10

12

收益

5.6

6.5

12.0

27.5

80.0

129.2

并根據(jù)數(shù)據(jù)繪制散點(diǎn)圖如圖所示:

根據(jù)散點(diǎn)圖的特點(diǎn),甲認(rèn)為樣本點(diǎn)分布在指數(shù)曲線的周圍,據(jù)此他對(duì)數(shù)據(jù)進(jìn)行了一些初步處理.如下表:

43.5

4.5

854.0

34.7

12730.4

70

其中.

1)(i)請(qǐng)根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程(保留一位小數(shù));

ii)根據(jù)所建立的回歸方程,若該企業(yè)想在下一年收益達(dá)到2億,則科技投入的費(fèi)用至少要多少?(其中

2)乙認(rèn)為樣本點(diǎn)分布在二次曲線的周圍,并計(jì)算得回歸方程為,以及該回歸模型的相關(guān)指數(shù),試比較甲乙兩人所建立的模型,誰(shuí)的擬合效果更好.

附:對(duì)于一組數(shù)據(jù),,,,其回歸直線方程的斜率和截距的最小二乘估計(jì)分別為,,相關(guān)指數(shù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知焦點(diǎn)在y軸上的拋物線過(guò)點(diǎn),橢圓的兩個(gè)焦點(diǎn)分別為,,其中的焦點(diǎn)重合,過(guò)點(diǎn)的長(zhǎng)軸垂直的直線交A,B兩點(diǎn),且,曲線是以坐標(biāo)原點(diǎn)O為圓心,以為半徑的圓.

1)求的標(biāo)準(zhǔn)方程;

2)若動(dòng)直線l相切,且與交于MN兩點(diǎn),求的面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一段南北兩岸互相平行、寬度為的景觀河.靠南岸水域有一半徑為半圓形親水平臺(tái),圓心在南岸邊上,北岸邊有一風(fēng)雨亭(底座大小忽略不計(jì)),風(fēng)雨亭距位于北岸邊上的點(diǎn)的正北方,的右側(cè)).為了方便市民休閑,現(xiàn)決定修建折線型步行棧道(圖中粗線所示),其中與圓相切,段的造價(jià)為4萬(wàn)元/段和段分別在南北兩岸邊上(其中為半圓的一條直徑的左端點(diǎn)),段和段的造價(jià)都為2萬(wàn)元/..

1)若,求棧道段的長(zhǎng);

2)設(shè)三段棧道總造價(jià)為,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案