【題目】已知函數(shù).
(1)求函數(shù)的圖象在點(diǎn)處的切線方程;
(2)若在上有解,求的取值范圍;
(3)設(shè)是函數(shù)的導(dǎo)函數(shù),是函數(shù)的導(dǎo)函數(shù),若函數(shù)的零點(diǎn)為,則點(diǎn)恰好就是該函數(shù)的對(duì)稱中心.試求的值.
【答案】(1)
(2)
(3)
【解析】
(1)先求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,再根據(jù)點(diǎn)斜式得方程,
(2)先化簡(jiǎn)不等式,再利用參變分離法將二次不等式有解問題轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問題,最后根據(jù)二次函數(shù)最值求結(jié)果,
(3)根據(jù)對(duì)稱中心性質(zhì)得,再利用對(duì)稱性求和.
解:(1)因?yàn)?/span>
所以所求切線的斜率
又因?yàn)榍悬c(diǎn)為
所以所求的切線方程為
(2)因?yàn)?/span>,所以
因?yàn)?/span>在上有解,
所以不小于在區(qū)間上的最小值.
因?yàn)?/span>時(shí),,
所以的取值范圍是.
(3)因?yàn)?/span>,所以.
令可得,
所以函數(shù)的對(duì)稱中心為,
即如果,則,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)學(xué)校對(duì)高三年級(jí)文科學(xué)生進(jìn)行了一次自主學(xué)習(xí)習(xí)慣的自評(píng)滿意度的調(diào)查,按系統(tǒng)抽樣方法得到了一個(gè)自評(píng)滿意度(百分制,單位:分)的樣本,如圖分別是該樣本數(shù)據(jù)的莖葉圖和頻率分布直方圖(都有部分缺失).
(1)完善頻率分布直方圖(需寫出計(jì)算過程);
(2)分別根據(jù)莖葉圖和頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù)m1和m2,并指出選用哪一個(gè)數(shù)據(jù)來估計(jì)總體的中位數(shù)更合理(需要敘述理由).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水污染現(xiàn)狀與工業(yè)廢水排放密切相關(guān),某工廠深人貫徹科學(xué)發(fā)展觀,努力提高污水收集處理水平,其污水處理程序如下:原始污水必先經(jīng)過A系統(tǒng)處理,處理后的污水(A級(jí)水)達(dá)到環(huán)保標(biāo)準(zhǔn)(簡(jiǎn)稱達(dá)標(biāo))的概率為p(0<p<1).經(jīng)化驗(yàn)檢測(cè),若確認(rèn)達(dá)標(biāo)便可直接排放;若不達(dá)標(biāo)則必須進(jìn)行B系統(tǒng)處理后直接排放.
某廠現(xiàn)有4個(gè)標(biāo)準(zhǔn)水量的A級(jí)水池,分別取樣、檢測(cè),多個(gè)污水樣本檢測(cè)時(shí),既可以逐個(gè)化驗(yàn),也可以將若干個(gè)樣本混合在一起化驗(yàn),混合樣本中只要有樣本不達(dá)標(biāo),則混合樣本的化驗(yàn)結(jié)果必不達(dá)標(biāo),若混合樣本不達(dá)標(biāo),則該組中各個(gè)樣本必須再逐個(gè)化驗(yàn);若混合樣本達(dá)標(biāo),則原水池的污水直接排放
現(xiàn)有以下四種方案:
方案一:逐個(gè)化驗(yàn);
方案二:平均分成兩組化驗(yàn);方案三;三個(gè)樣本混在一起化驗(yàn),剩下的一個(gè)單獨(dú)化驗(yàn);
方案四:四個(gè)樣本混在一起化驗(yàn).
化驗(yàn)次數(shù)的期望值越小,則方案越"優(yōu)".
(1)若,求2個(gè)A級(jí)水樣本混合化驗(yàn)結(jié)果不達(dá)標(biāo)的概率;
(2)①若,現(xiàn)有4個(gè)A級(jí)水樣本需要化驗(yàn),請(qǐng)問:方案一、二、四中哪個(gè)最“優(yōu)"?②若“方案三”比“方案四"更“優(yōu)”,求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義一:對(duì)于一個(gè)函數(shù),若存在兩條距離為d的直線和,使得在時(shí),恒成立,則稱函數(shù)在D內(nèi)有一個(gè)寬度為d的通道.定義二:若一個(gè)函數(shù),對(duì)于任意給定的正數(shù),都存在一個(gè)實(shí)數(shù),使得函數(shù)在內(nèi)有一個(gè)寬度為的通道,則稱在正無窮處有永恒通道.下列函數(shù):①;②;③.其中在正無窮處有永恒通道的函數(shù)的個(gè)數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線的焦點(diǎn)為,為拋物線上異于原點(diǎn)的任意一點(diǎn),以為直徑作圓,當(dāng)直線的斜率為1時(shí),.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過焦點(diǎn)作的垂線與圓的一個(gè)交點(diǎn)為,交拋物線于,(點(diǎn)在點(diǎn),之間),記的面積為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種水箱用的“浮球”是由兩個(gè)相同半球和一個(gè)圓柱筒組成,它的軸截面如圖所示,已知半球的直徑是,圓柱筒高,為增強(qiáng)該“浮球”的牢固性,給“浮球”內(nèi)置一“雙蝶形”防壓卡,防壓卡由金屬材料桿,,,,,及焊接而成,其中,分別是圓柱上下底面的圓心,,,,均在“浮球”的內(nèi)壁上,AC,BD通過“浮球”中心,且、均與圓柱的底面垂直.
(1)設(shè)與圓柱底面所成的角為,試用表示出防壓卡中四邊形的面積,并寫出的取值范圍;
(2)研究表明,四邊形的面積越大,“浮球”防壓性越強(qiáng),求四邊形面積取最大值時(shí),點(diǎn)到圓柱上底面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司統(tǒng)計(jì)了2010~2018年期間公司年收的增加值(萬元)以及相應(yīng)的年增長(zhǎng)率,所得數(shù)據(jù)如下所示:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
增加值 | 1555 | 2100 | 2220 | 2740 | 3135 | 3563 | 4041 | 5494.4 | 6475 |
增長(zhǎng)率 |
|
(1)通過散點(diǎn)圖可知,可用線性回歸模型擬合2010~2014年與的關(guān)系;
①求2010~2014年這5年期間公司年利潤(rùn)的增加值的平均數(shù);
②求關(guān)于的線性回歸方程;
(2)從哪年開始連續(xù)三年公司利潤(rùn)增加值的方差最大?(不需要說明理由)
附:參考公式:回歸直線方程中的斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示.
(1) 求函數(shù)的解析式;
(2) 如何由函數(shù)的通過適當(dāng)圖象的變換得到函數(shù)的圖象, 寫出變換過程;
(3) 若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com