若x,y∈R,設M=
x2
x2-
3
xy+y2
(y≠0),則M的取值范圍是
 
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應用
分析:分子分母同時除以x2,得到關于
y
x
的一元二次函數(shù)形式,然后利用一元二次函數(shù)的性質(zhì)即可得到結(jié)論.
解答: 解:若x=0,則M=0,
若x≠0,
則M=
x2
x2-
3
xy+y2
=
1
1-
3
y
x
+(
y
x
)2
,
設t=(
y
x
2-
3
y
x
+1,
則t=(
y
x
2-
3
y
x
+1=(
y
x
-
3
2
2+
1
4
1
4
,
∴0
1
t
≤4
,
即此時0<M≤4,
綜上0≤M≤4且M≠1,
故答案為:{M|0≤M≤4且M≠1}.
點評:本題主要考查代數(shù)式的取值范圍,利用條件進行轉(zhuǎn)換為一元二次函數(shù)形式是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

唐徠回中隨機抽取部分新生調(diào)查其上學所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖,其中,上學所需時間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100],
(1)求直方圖中的x的值;
(2)如果上學所需時間不少于1小時的學生可申請住校,請估計學校600名新生中有多少名學生可以申請住校;
(3)學校規(guī)定上學時間在[0,20)的學生只能步行,上學時間在[20,40)的學生只能騎自行車,現(xiàn)在用分層抽樣方法從[0,20)和[20,40)中抽取6名學生,再從這6名學生中任意抽取兩人,問這兩人都騎自行車的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

據(jù)調(diào)查統(tǒng)計,通過這兩條公路從城市甲到城市乙的200輛汽車所用時間的頻數(shù)分布如下表.
(Ⅰ)為進行某項研究,從所用時間為12天的60輛汽車中隨機抽取6輛.
(i)若用分層抽樣的方法抽取,求從通過公路1和公路2的汽車中各抽取幾輛;
(ii)若從(i)的條件下抽取的6輛汽車中,再任意抽取兩輛汽車,求這兩輛汽車至少有一輛通過公路1的概率.
所用的時間(天) 10 11 12 13
通過公路1的頻數(shù) 20 40 20 20
通過公路2的頻數(shù) 10 40 40 10
(Ⅱ)假設汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā).為了盡最大可能在各自允許的時間內(nèi)將貨物運往城市乙,估計汽車A和汽車B應如何選擇各自的路徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直二面角α-l-β,A∈α,B∈β,A,B兩點均不在直線l上,又直線AB與l成30°角,且線段AB=8,則線段AB的中點M到l的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點P0(x0,y0)在橢圓
x2
a2
+
y2
b2
=1(a>b>0)外,過點P0作該橢圓的兩條切線的切點分別為P1,P2,則切點弦P1P2所在直線的方程為
x0x
a2
+
y0y
b2
=1.那么對于雙曲線,類似地,可以得到一個正確的命題為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x-1|.
(Ⅰ)解不等式f(x-1)+f(x+3)≥6;
(Ⅱ)若|a|<1,|b|<1,且a≠0,求證:f(ab)>|a|f(
b
a
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

變量x,y滿足條件
x+2y-1≥0
x-y+2≥0
2x+y-5≤0
,則3x-2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“橫看成嶺側(cè)成峰,遠近高低各不同.”同一事物從不同角度看,我們會有不同的認識.在數(shù)學的解題中,倘若能恰當?shù)馗淖兎治鰡栴}的角度,往往會有“山窮水盡疑無路,柳暗花明又一村”的豁然開朗之感.閱讀以下問題及其解答:
問題:對任意a∈[-1,1],不等式x2+ax-2≤0恒成立,求實數(shù)x的取值范圍.
解:令f(a)=xa+(x2-2),則對任意a∈[-1,1],不等式x2+ax-2≤0恒成立只需滿足
x2-x-2≤0
x2+x-2≤0
,所以-1≤x≤1.
類比其中所用的方法,可解得關于x的方程x3-ax2-x-(a2+a)=0(a<0)的根為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若α=π2,則α的終邊落在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習冊答案