函數(shù)f(x)=
x2-2,   x≤0
2x-6+lnx,  x>0
的零點(diǎn)個(gè)數(shù)是
 
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)零點(diǎn)的定義,直接解方程即可得到結(jié)論.
解答: 解:當(dāng)x≤0時(shí),由f(x)=0得x2-2=0,解得x=-
2
或x=
2
(舍去),
當(dāng)x>0時(shí),由f(x)=0得2x-6+lnx=0,即lnx=6-2x,
作出函數(shù)y=lnx和y=6-2x在同一坐標(biāo)系圖象,由圖象可知此時(shí)兩個(gè)函數(shù)只有1個(gè)零點(diǎn),
故函數(shù)f(x)的零點(diǎn)個(gè)數(shù)為2,
故答案為:2
點(diǎn)評(píng):本題主要考查函數(shù)零點(diǎn)個(gè)數(shù)的判斷,對(duì)于比較好求的函數(shù),直接解方程f(x)=0即可,對(duì)于比較復(fù)雜的函數(shù),由利用數(shù)形結(jié)合進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c.
(Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,求cosB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0<θ<
π
2
,向量
a
=(sin2θ,cosθ),
b
=(cosθ,1),若
a
b
,則tanθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P是正方體ABCD-A1B1C1D1棱A1D1上一點(diǎn),設(shè)點(diǎn)P和直線AC1確定的平面為α,過點(diǎn)P與直線AC1垂直的平面為β,則下列命題正確的是
 

①存在平面α,使得A1B∥α;
②對(duì)任意平面α都有α⊥β;
③平面α將正方體分割為體積相等的兩部分;
④β截正方體所得截面多邊形可能是四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三位同學(xué)被問到是否去過A,B,C三個(gè)城市時(shí),
甲說:我去過的城市比乙多,但沒去過B城市;
乙說:我沒去過C城市;
丙說:我們?nèi)巳ミ^同一城市;
由此可判斷乙去過的城市為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從正方形四個(gè)頂點(diǎn)及其中心這5個(gè)點(diǎn)中,任取2個(gè)點(diǎn),則這2個(gè)點(diǎn)的距離不小于該正方形邊長(zhǎng)的概率為( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四面體ABCD中,E是AB的中點(diǎn),則異面直線CE與BD所成角的余弦值為(  )
A、
1
6
B、
3
6
C、
1
3
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,O為原點(diǎn),A(-1,0),B(0,
3
),C(3,0),動(dòng)點(diǎn)D滿足|
CD
|=1,則|
OA
+
OB
+
OD
|的取值范圍是( 。
A、[4,6]
B、[
19
-1,
19
+1]
C、[2
3
,2
7
]
D、[
7
-1,
7
+1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

奇函數(shù)f(x)的定義域?yàn)镽,若f(x+2)為偶函數(shù),且f(1)=1,則f(8)+f(9)=(  )
A、-2B、-1C、0D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案