已知定義域?yàn)镽的偶函數(shù)f(x)在區(qū)間[0,+∞)上是增函數(shù),若f(1)<f(lgx),則實(shí)數(shù)x的取值范圍是
(0,
1
10
)∪(10,+∞)
(0,
1
10
)∪(10,+∞)
分析:根據(jù)偶函數(shù)在對(duì)稱(chēng)區(qū)間上單調(diào)性相反,結(jié)合已知我們可分析出函數(shù)的單調(diào)性,進(jìn)而根據(jù)f(1)<f(lgx),可得1<|lgx|,根據(jù)絕對(duì)值的定義及對(duì)數(shù)函數(shù)的單調(diào)性解不等式可得答案.
解答:解:∵函數(shù)f(x)是定義域?yàn)镽的偶函數(shù)
且函數(shù)f(x)在區(qū)間[0,+∞)上是增函數(shù),
則函數(shù)f(x)在區(qū)間(-∞,0]上是減函數(shù),
若f(1)<f(lgx),
則1<|lgx|
即lgx<-1,或lgx>1
解得x∈(0,
1
10
)∪(10,+∞)

故答案為:(0,
1
10
)∪(10,+∞)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的奇偶性,函數(shù)的單調(diào)性,絕對(duì)值不等式的解法,對(duì)數(shù)函數(shù)的單調(diào)性,其中根據(jù)函數(shù)的性質(zhì)分析出1<|lgx|是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿(mǎn)足f(2x-1)<f(-1)的x取值范圍是
(0,1)
(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的偶函數(shù)f(x)滿(mǎn)足:對(duì)于任意實(shí)數(shù)x,都有f(1+x)=f(1-x),且當(dāng)0≤x≤1時(shí),f(x)=3x+1+2x.
(1)求證:對(duì)于任意實(shí)數(shù)x,都有f(x+2)=f(x);
(2)當(dāng)x∈[1,3]時(shí),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的偶函數(shù)f(x)=ax+b•a-x(a>0,a≠1,b∈R).
(1)求實(shí)數(shù)b的值;
(2)判斷并證明f(x)的單調(diào)性;
(3)若f((log2x)2-log2x+1)≥f(m+log
12
x2)
對(duì)任意x∈[2,4]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的偶函數(shù)f(x),當(dāng)x≥0時(shí)f(x)=2-x,則當(dāng)x<0時(shí),f(x)=
x+2
x+2

查看答案和解析>>

同步練習(xí)冊(cè)答案