【題目】已知橢圓(常數(shù)),P是曲線C上的動(dòng)點(diǎn),M是曲線C的右頂點(diǎn),定點(diǎn)A的坐標(biāo)為.

1)若MA重合,求曲線C的焦距.

2)若,求的最大值與最小值.

【答案】1;(2的最大值為5,最小值為.

【解析】

1)由MA重合,可得橢圓的右頂點(diǎn)的坐標(biāo)為,即,再由即可求出的值,從而求出焦距;

2)設(shè),利用兩點(diǎn)間的距離公式及點(diǎn)P坐標(biāo)滿(mǎn)足橢圓方程,得到關(guān)于的一元二次方程,根據(jù)二次函數(shù)的性質(zhì)求出的最大值與最小值即可.

1)根據(jù)題意,若MA重合,即橢圓的右頂點(diǎn)的坐標(biāo)為,

,所以橢圓的方程為:,其焦點(diǎn)在x軸上,

設(shè)焦距為,所以有,

所以橢圓焦距為

2)若,則橢圓的方程為,變形可得,

設(shè),則

根據(jù)二次函數(shù)的性質(zhì),可得時(shí),取得最大值25

當(dāng)時(shí),取得最小值

所以的最大值為5,最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

在其定義域上單調(diào)遞減,求的取值范圍;

存在兩個(gè)不同極值點(diǎn),且,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:的離心率為,左、右頂點(diǎn)分別為A,B,點(diǎn)M是橢圓C上異于A,B的一點(diǎn),直線AM與y軸交于點(diǎn)P.

(Ⅰ)若點(diǎn)P在橢圓C的內(nèi)部,求直線AM的斜率的取值范圍;

(Ⅱ)設(shè)橢圓C的右焦點(diǎn)為F,點(diǎn)Q在y軸上,且AQ∥BM,求證:∠PFQ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為 (其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系中,直線的極坐標(biāo)方程為.

C的普通方程和直線的傾斜角;

設(shè)點(diǎn)(0,2),交于兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),已知,其中為正整數(shù),對(duì)于平面上任意一點(diǎn),記關(guān)于的對(duì)稱(chēng)點(diǎn),關(guān)于的對(duì)稱(chēng)點(diǎn),…關(guān)于的對(duì)稱(chēng)點(diǎn).

1)求向量的坐標(biāo);

2)對(duì)于任意偶數(shù),用表示向量的坐標(biāo);

3)當(dāng)點(diǎn)在函數(shù)圖像上移動(dòng)時(shí),點(diǎn)形成的是函數(shù)的圖像,其中是以3為周期的周期函數(shù),且當(dāng)時(shí),,求:函數(shù)上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農(nóng)村教師的住房問(wèn)題,計(jì)劃征用一塊土地蓋一幢建筑總面積為10000公寓樓(每層的建筑面積相同).已知士地的征用費(fèi)為,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層建筑費(fèi)用為,以后每增高一層,其建筑費(fèi)用就增加,設(shè)這幢公寓樓高層數(shù)為n,總費(fèi)用為萬(wàn)元.(總費(fèi)用為建筑費(fèi)用和征地費(fèi)用之和)

1)若總費(fèi)用不超過(guò)835萬(wàn)元,求這幢公寓樓最高有多少層數(shù)?

2)試設(shè)計(jì)這幢公寓的樓層數(shù),使總費(fèi)用最少,并求出最少費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p方程:表示焦點(diǎn)在x軸上的雙曲線;命題q關(guān)于x的不等式x2+2ax+1≥0R上恒成立

1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;

2)若命題pq為真命題,pq為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)同學(xué)家開(kāi)了一個(gè)奶茶店,他為了研究氣溫對(duì)熱奶茶銷(xiāo)售杯數(shù)的影響,從一季度中隨機(jī)選取5天,統(tǒng)計(jì)出氣溫與熱奶茶銷(xiāo)售杯數(shù),如表:

氣溫oC)

0

4

12

19

27

熱奶茶銷(xiāo)售杯數(shù)

150

132

130

104

94

(Ⅰ)求熱奶茶銷(xiāo)售杯數(shù)關(guān)于氣溫的線性回歸方程精確到0.1),若某天的氣溫為15oC,預(yù)測(cè)這天熱奶茶的銷(xiāo)售杯數(shù);

(Ⅱ)從表中的5天中任取一天,若已知所選取該天的熱奶茶銷(xiāo)售杯數(shù)大于120,求所選取該天熱奶茶銷(xiāo)售杯數(shù)大于130的概率.

參考數(shù)據(jù):,.參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,過(guò)焦點(diǎn)F的直線l與拋物線分別交于AB兩點(diǎn),O為坐標(biāo)原點(diǎn),且.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)對(duì)于拋物線上任一點(diǎn)Q,點(diǎn)P2t,0)都滿(mǎn)足|PQ|≥2|t|,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案