下了函數(shù)中,滿足“”的單調(diào)遞增函數(shù)是(  )
A.B.
C.D.
B

試題分析:A選項(xiàng):由,,得,所以A錯(cuò)誤;B選項(xiàng):由,,得;又函數(shù)是定義在上增函數(shù),所以B正確;C選項(xiàng):由,,得,所以C錯(cuò)誤;D選項(xiàng):函數(shù)是定義在上減函數(shù),所以D錯(cuò)誤;故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),,(1)若的最小值為2,求值;(2)設(shè)函數(shù)有零點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054301095357.png" style="vertical-align:middle;" />的函數(shù)同時(shí)滿足以下三個(gè)條件:
①對(duì)任意的,總有;
;
③當(dāng),且時(shí),成立.
稱這樣的函數(shù)為“友誼函數(shù)”.
請(qǐng)解答下列各題:
(1)已知為“友誼函數(shù)”,求的值;
(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?請(qǐng)給出理由;
(3)已知為“友誼函數(shù)”,假定存在,使得,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)(a≠0)滿足為偶函數(shù),且x=-2是函數(shù)的一個(gè)零點(diǎn).又>0).
(1)求函數(shù)的解析式;
(2)若關(guān)于x 的方程上有解,求實(shí)數(shù)的取值范圍;
(3)令,求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)()的圖象如圖所示,則不等式的解集為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若直線與曲線滿足下列兩個(gè)條件:
直線在點(diǎn)處與曲線相切;曲線附近位于直線的兩側(cè),則稱直線在點(diǎn)處“切過(guò)”曲線.
下列命題正確的是_________(寫出所有正確命題的編號(hào))
①直線在點(diǎn)處“切過(guò)”曲線
②直線在點(diǎn)處“切過(guò)”曲線
③直線在點(diǎn)處“切過(guò)”曲線
④直線在點(diǎn)處“切過(guò)”曲線
⑤直線在點(diǎn)處“切過(guò)”曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)、滿足,則稱、在區(qū)間上的一組正交函數(shù),給出三組函數(shù):①;②;③.
其中為區(qū)間的正交函數(shù)的組數(shù)是(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某村莊擬修建一個(gè)無(wú)蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為米,高為米,體積為立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為元(為圓周率).
(1)將表示成的函數(shù),并求該函數(shù)的定義域;
(2)討論函數(shù)的單調(diào)性,并確定為何值時(shí)該蓄水池的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的圖象可能是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案