【題目】已知函數(shù)f(x)=ln x-a(x-1),g(x)=ex.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)h(x)=f(x+1)+g(x),當x>0時,h(x)>1恒成立,求實數(shù)a的取值范圍.
【答案】(1)見解析(2)(-∞,2]
【解析】分析:(1)由函數(shù),求得,分類討論即可求解函數(shù)的單調(diào)區(qū)間;
(2)因為,所以,令,求得,得到單調(diào)性和最值,即可求解.
詳解:(1)函數(shù)f(x)的定義域為(0,+∞),f′(x)=-a= (x>0)..
①若a≤0,對任意的x>0,均有f′(x)>0,所以f(x)的單調(diào)遞增區(qū)間為(0,+∞),無單調(diào)遞減區(qū)間;.
②若a>0,當x∈時,f′(x)>0,當x∈時,f′(x)<0,所以f(x)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為...
綜上,當a≤0時,f(x)的單調(diào)遞增區(qū)間為(0,+∞),無單調(diào)遞減區(qū)
當a>0時,f(x)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為
(2)因為h(x)=f(x+1)+g(x)=ln (x+1)-ax+ex,所以
h′(x)=ex+-a..
令φ(x)=h′(x),因為x∈(0,+∞),φ′(x)=ex-=>0.
所以h′(x)在(0,+∞)上單調(diào)遞增,h′(x)>h′(0)=2-a,
①當a≤2時,h′(x)>0,所以h(x)在(0,+∞)上單調(diào)遞增,h(x)>h(0)=1恒成立,符合題意;.
②當a>2時,h′(0)=2-a<0,h′(x)>h′(0),所以存在x0∈(0,+∞),使得h′(x0)=0..
所以h(x)在(x0,+∞)上單調(diào)遞增,在(0,x0)上單調(diào)遞減,又h(x0)<h(0)=1,所以h(x)>1不恒成立,不符合題意.
綜上,實數(shù)a的取值范圍是(-∞,2].
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線過點,且,線段交圓的交點為點,是關(guān)于軸的對稱點.
(1)求直線的方程;
(2)已知是圓上不同的兩點,且,試證明直線的斜率為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,中美貿(mào)易摩擦不斷.特別是美國對我國華為的限制.盡管美國對華為極力封鎖,百般刁難,并不斷加大對各國的施壓,拉攏他們抵制華為5G,然而這并沒有讓華為卻步.華為在2018年不僅凈利潤創(chuàng)下記錄,海外增長同樣強勁.今年,我國華為某一企業(yè)為了進一步增加市場競爭力,計劃在2020年利用新技術(shù)生產(chǎn)某款新手機.通過市場分析,生產(chǎn)此款手機全年需投入固定成本250萬,每生產(chǎn)(千部)手機,需另投入成本萬元,且 ,由市場調(diào)研知,每部手機售價0.7萬元,且全年內(nèi)生產(chǎn)的手機當年能全部銷售完.
()求出2020年的利潤(萬元)關(guān)于年產(chǎn)量(千部)的函數(shù)關(guān)系式,(利潤=銷售額—成本);
2020年產(chǎn)量為多少(千部)時,企業(yè)所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
(Ⅰ)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列;
(Ⅱ)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量n(單位:瓶)為多少時,Y的數(shù)學(xué)期望達到最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】研究發(fā)現(xiàn),北京 PM 2.5 的重要來源有土壤塵、燃煤、生物質(zhì)燃燒、汽車尾氣與垃圾焚燒、工業(yè)污染和二次無機氣溶膠,其中燃煤的平均貢獻占比約為 18%.為實現(xiàn)“節(jié)能減排”,還人民“碧水藍天”,北京市推行“煤改電”工程,采用空氣源熱泵作為冬天供暖.進入冬季以來,該市居民用電量逐漸增加,為保證居民取暖,市供電部門對該市 100 戶居民冬季(按 120 天計算)取暖用電量(單位:度)進行統(tǒng)計分析,得到居民冬季取暖用電量的頻率分布直方圖如圖所示.
(1)求頻率分布直方圖中的值;
(2)從這 100 戶居民中隨機抽取 1 戶進行深度調(diào)查,求這戶居民冬季取暖用電量在[3300,3400]的概率;
(3)在用電量為[3200,3250),[3250,3300),[3300,3350),[3350,3400]的四組居民中,用分層抽樣的方法抽取 34 戶居民進行調(diào)查,則應(yīng)從用電量在[3200,3250)的居民中抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)(x∈R)滿足f(x)=f(2-x),且對任意的x1,x2∈(-∞,1](x1≠x2)有(x1-x2)(f(x1)-f(x2))<0.則( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,其中AD∥BC,AB⊥AD,AB=AD= BC, = .
(1)求證:DE⊥平面PAC;
(2)若直線PE與平面PAC所成角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}共有5項,其中a1=0,a5=2,且|ai+1﹣ai|=1,i=1,2,3,4,則滿足條件的不同數(shù)列的個數(shù)為( 。
A.3
B.4
C.5
D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com