在極坐標(biāo)系中,圓ρ2cos θ的垂直于極軸的兩條切線方程分別為(  )

Aθ0(ρR)ρcosθ2 Bθ(ρR)ρcos θ2

Cθ(ρR)ρcos θ1 Dθ0(ρR)ρcos θ1

 

B

【解析】如圖,

在極坐標(biāo)系中圓ρ2cos θ的垂直于極軸的兩條切線方程分別為θρcos θ2.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-1等差數(shù)列與等比數(shù)列練習(xí)卷(解析版) 題型:選擇題

等差數(shù)列{an}中,若a1a4a739,a3a6a927,則前9項(xiàng)的和S9等于(  )

A66 B99

C144 D297

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)1-2算法與程序框圖等練習(xí)卷(解析版) 題型:解答題

若函數(shù)f(x)對(duì)任意的實(shí)數(shù)x1,x2D,均有|f(x2)f(x1)|≤|x2x1|,則稱函數(shù)f(x)是區(qū)間D上的平緩函數(shù)

(1)判斷g(x)sin xh(x)x2x是不是實(shí)數(shù)集R上的平緩函數(shù),并說(shuō)明理由;

(2)若數(shù)列{xn}對(duì)所有的正整數(shù)n都有|xn1xn|≤,設(shè)ynsin xn,求證:|yn1y1|.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)知能提升演練選修4-5練習(xí)卷(解析版) 題型:填空題

若存在實(shí)數(shù)x使|xa||x1|≤3成立,則實(shí)數(shù)a的取值范圍是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)知能提升演練選修4-4練習(xí)卷(解析版) 題型:填空題

在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知射線θ與曲線 (t為參數(shù))相交于A,B兩點(diǎn),則線段AB的中點(diǎn)的直角坐標(biāo)為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)知能提升演練選修4-2練習(xí)卷(解析版) 題型:解答題

設(shè)矩陣M (其中a>0,b>0)

(1)a2,b3,求矩陣M的逆矩陣M1

(2)若曲線Cx2y21在矩陣M所對(duì)應(yīng)的線性變換作用下得到曲線Cy21,求a,b的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)知能提升演練選修4-1練習(xí)卷(解析版) 題型:填空題

如圖O上一點(diǎn)C在直徑AB上的射影為D,點(diǎn)D在半徑OC上的射影為E,AB3AD,的值為________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)知能提升演練1-7-3練習(xí)卷(解析版) 題型:選擇題

以下莖葉圖記錄了甲、乙兩組各五名學(xué)生在一次英語(yǔ)聽(tīng)力測(cè)試中的成績(jī)(單位:分)

已知甲組數(shù)據(jù)的中位數(shù)為15,乙組數(shù)據(jù)的平均數(shù)為16.8,則x,y的值分別為(  )

A2,5 B5,5 C5,8 D8,8

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)知能提升演練1-6-2練習(xí)卷(解析版) 題型:選擇題

拋物線C1yx2(p>0)的焦點(diǎn)與雙曲線C2y21的右焦點(diǎn)的連線交C1于第一象限的點(diǎn)M.C1在點(diǎn)M處的切線平行于C2的一條漸近線,則p(  )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案