已知直線y=2與函數(shù)y=sinωx+
3
cosωx(ω>0)圖象的兩個相鄰交點(diǎn)A,B,線段AB的長度為
3
,則ω的值為
 
考點(diǎn):兩角和與差的正弦函數(shù),函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由題意可得,T=
ω
=|AB|=
3
,由此求得ω 的值.
解答: 解:∵直線y=2與函數(shù)y=sinωx+
3
cosωx=2sin(ωx+
π
3
)圖象的兩個相鄰交點(diǎn)A,B,線段AB的長度為
3

∴T=
ω
=|AB|=
3
,∴ω=3,
故答案為:3.
點(diǎn)評:本題主要考查兩角和的正弦公式,函數(shù)y=Asin(ωx+φ)的圖象特征,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
(log2x)2-1
的定義域?yàn)椋ā 。?/div>
A、(0,
1
2
B、(2,+∞)
C、(0,
1
2
)∪(2,+∞)
D、(0,
1
2
]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和是Sn,a1=1,數(shù)列{bn}對于任意的n∈N*都有2nSn=n2bn成立,且b3=a2+a3
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)如果數(shù)列{bn}的前n項(xiàng)和為Tn,對于任意的n∈N*都有k(Tn+2)≥S2n恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈[1,2],x2+ax+1≥0,命題q:?x∈R,x2+2ax+2-a=0,若命題“p且q”是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知數(shù)列{an}滿足a1=1,a2n-a2n-1=2,a2n+1-a2n=3n(n∈N*).
(I)計(jì)算:(a3-a1)+(a5-a3),并求a5;
(Ⅱ)求a2n-1(用含n的式子表示);
(Ⅲ)記bn=a2n-1+a2n,數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,若3sinB=2sinC,a2-b2=
5
2
bc,則A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax的圖象在點(diǎn)(1,f(1))處的切線l與直線x+3y+2=0垂直,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義在R上的函數(shù)f(x)圖象連續(xù)不斷,若存在常數(shù)a(a∈R),使得f(x+a)+af(x)=0對任意的實(shí)數(shù)x成立,則稱f (x)是階數(shù)為a的回旋函數(shù),現(xiàn)有下列4個命題:
①f(x)=x2必定不是回旋函數(shù);
②若f(x)=sinωx(ω≠0)為回旋函數(shù),則其最小正周期必不大于2;
③若指數(shù)函數(shù)為回旋函數(shù),則其階數(shù)必大于1;
④若對任意一個階數(shù)為a(a≥0)的回旋函數(shù)f (x),方程f(x)=0均有實(shí)數(shù)根,其中為真命題的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠C=90°,CA=CB=1,P為△ABC內(nèi)一點(diǎn),過點(diǎn)P分別引三邊的平行線,與各邊圍成以P為頂點(diǎn)的三個三角形(圖中陰影部分),則這三個三角形的面積和的最小值為( 。
A、
1
9
B、
1
8
C、
1
6
D、
1
3

查看答案和解析>>

同步練習(xí)冊答案