【題目】已知原命題“如果,那么關(guān)于的不等式的解集為”,那么原命題、逆命題、否命題和逆否命題是假命題的共有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】B

【解析】

根據(jù)四種命題之間的關(guān)系利用逆否命題的真假關(guān)系進(jìn)行判斷即可.

若不等式(a24x2+a+2x1≥0的解集為,

則根據(jù)題意需分兩種情況:

①當(dāng)a240時(shí),即a±2

a2時(shí),原不等式為4x1≥0,解得x,故舍去,

a=﹣2時(shí),原不等式為﹣1≥0,無(wú)解,符合題意;

②當(dāng)a24≠0時(shí),即a≠±2

∵(a24x2+a+2x1≥0的解集是空集,

,解得﹣2a,

綜上得,實(shí)數(shù)a的取值范圍是[2,

則當(dāng)﹣1≤a≤1時(shí),命題為真命題,則命題的逆否命題為真命題,

反之不成立,即逆命題為假命題,否命題也為假命題,

故它的逆命題、否命題、逆否命題及原命題中是假命題的共有2個(gè),

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)),數(shù)列滿足,,數(shù)列滿足.

(1)求證:數(shù)列是等差數(shù)列;

(2)設(shè)數(shù)列滿足),且中任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),求的取值范圍;

(3)設(shè)數(shù)列滿足),求的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:的上頂點(diǎn)為A,以A為圓心,橢圓的長(zhǎng)半軸為半徑的圓與y軸的交點(diǎn)分別為、.

(1)求橢圓的方程;

(2)設(shè)不經(jīng)過(guò)點(diǎn)A的直線與橢圓交于P、Q兩點(diǎn),且,試探究直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)不相等的非零向量,,兩組向量,,,,,均由2個(gè)3個(gè)排列而成,記表示S所有可能取值中的最小值,則下列命題正確的是________.(寫出所有正確命題的編號(hào))

S5個(gè)不同的值;②若,則無(wú)關(guān);③若,則無(wú)關(guān);④若,則;⑤若,,則的夾角為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在拋物線上,則當(dāng)點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合D{x1,x2|x10,x20x1+x2k}(其中k為正常數(shù)).

1)設(shè),求的取值范圍

2)求證:當(dāng)時(shí),不等式對(duì)任意恒成立

3)求使不等式對(duì)任意恒成立的的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是邊長(zhǎng)為2的菱形,且.四邊形是平行四邊形,且.點(diǎn),在平面內(nèi)的射影為,,且上,四棱錐的體積為2.

(1)求證:平面平面;

(2)在上是否存在點(diǎn),使平面?如果存在,是確定點(diǎn)的位置,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點(diǎn),則異面直線AEBF所成角的余弦值為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱錐中,,,.

(Ⅰ)求證:平面平面;

(Ⅱ)為棱上一點(diǎn),試確定點(diǎn)的位置,使得直線與平面所成角的正弦值為.

查看答案和解析>>

同步練習(xí)冊(cè)答案