【題目】某房地產(chǎn)開(kāi)發(fā)公司計(jì)劃在一樓區(qū)內(nèi)建造一個(gè)長(zhǎng)方形公園ABCD,公園由長(zhǎng)方形的休閑區(qū)A1B1C1D1(陰影部分)和環(huán)公園人行道組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米.
(1)若設(shè)休閑區(qū)的長(zhǎng)A1B1=x米,求公園ABCD所占面積S關(guān)于x的函數(shù)S(x)的解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長(zhǎng)和寬該如何設(shè)計(jì)?
【答案】
(1)解:由A1B1=x米,知 米
∴ =
(2)解:
當(dāng)且僅當(dāng) ,即x=100時(shí)取等號(hào)
∴要使公園所占面積最小,休閑區(qū)A1B1C1D1的長(zhǎng)為100米、寬為40米.
【解析】(1)利用休閑區(qū)A1B1C1D1的面積為4000平方米,表示出 ,進(jìn)而可得公園ABCD所占面積S關(guān)于x的函數(shù)S(x)的解析式;(2)利用基本不等式確定公園所占最小面積,即可得到結(jié)論.
【考點(diǎn)精析】利用基本不等式在最值問(wèn)題中的應(yīng)用對(duì)題目進(jìn)行判斷即可得到答案,需要熟知用基本不等式求最值時(shí)(積定和最小,和定積最大),要注意滿足三個(gè)條件“一正、二定、三相等”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖像在點(diǎn)處的切線方程為.
(1)求實(shí)數(shù)的值及函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),比較與(為自然對(duì)數(shù)的底數(shù))的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)M是棱長(zhǎng)為2的正方體的棱AD的中點(diǎn),P是平面內(nèi)一點(diǎn),若面分別與面ABCD和面所成的銳二面角相等,則長(zhǎng)度的最小值是( )
A. B. C. D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列幾個(gè)命題:
① 命題任意,都有,則存在,使得.
② 命題“若且,則且”的逆命題為假命題.
③ 空間任意一點(diǎn)和三點(diǎn),則是三點(diǎn)共線的充分不必要條件.
④ 線性回歸方程對(duì)應(yīng)的直線一定經(jīng)過(guò)其樣本數(shù)據(jù)點(diǎn)中的一個(gè).
其中不正確的個(gè)數(shù)為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和記為Sn , a1=1,an+1=2Sn+1(n≥1).
(1)求{an}的通項(xiàng)公式;
(2)等差數(shù)列{bn}的各項(xiàng)為正,其前n項(xiàng)和為T(mén)n , 且T3=15,又a1+b1 , a2+b2 , a3+b3成等比數(shù)列,求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,地面上有一豎直放置的圓形標(biāo)志物,圓心為C,與地面的接觸點(diǎn)為G.與圓形標(biāo)志物在同一平面內(nèi)的地面上點(diǎn)P處有一個(gè)觀測(cè)點(diǎn),且PG=50m.在觀測(cè)點(diǎn)正前方10m處(即PD=10m)有一個(gè)高為10m(即ED=10m)的廣告牌遮住了視線,因此在觀測(cè)點(diǎn)所能看到的圓形標(biāo)志的最大部分即為圖中從A到F的圓。
(1)若圓形標(biāo)志物半徑為25m,以PG所在直線為x軸,G為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,求圓C和直線PF的方程;
(2)若在點(diǎn)P處觀測(cè)該圓形標(biāo)志的最大視角(即∠APF)的正切值為 ,求該圓形標(biāo)志物的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 ,當(dāng)k為何值時(shí),
(1)與 垂直?
(2)與 平行?平行時(shí)它們是同向還是反向?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com