【題目】已知的三個(gè)頂點(diǎn),,,其外接圓為.對(duì)于線(xiàn)段上的任意一點(diǎn),
若在以為圓心的圓上都存在不同的兩點(diǎn),使得點(diǎn)是線(xiàn)段的中點(diǎn),則的半徑的取值范圍__________.
【答案】
【解析】分析:求出直線(xiàn)的方程設(shè)出點(diǎn)P,N的坐標(biāo),結(jié)合題意得到點(diǎn)M的坐標(biāo),然后根據(jù)點(diǎn)都在半徑為的上得到關(guān)于的方程組,將方程組有解轉(zhuǎn)化為兩圓有公共點(diǎn)處理,進(jìn)而得到關(guān)于的不等式恒成立,利用函數(shù)的知識(shí)求得值域后可得故且,再利用線(xiàn)段與圓無(wú)公共點(diǎn),即直線(xiàn)與圓相離可得,于是可求得.
詳解:由題意得直線(xiàn)的方程為.
設(shè)點(diǎn),
∵點(diǎn)是線(xiàn)段的中點(diǎn),
∴點(diǎn)的坐標(biāo)為.
又都在半徑為的上,
∴,即
∵關(guān)于的方程組有解,即以為圓心為半徑的圓和以為圓心為半徑的圓有公共點(diǎn),
∴,
又
∴對(duì)任意的恒成立.
設(shè),則有,
故且.
又線(xiàn)段與圓無(wú)公共點(diǎn),
∴對(duì)任意的恒成立,
∴.
綜上可得,所以,
即的半徑的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車(chē)行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過(guò)人行橫道,應(yīng)當(dāng)停車(chē)讓行,俗稱(chēng)“禮讓斑馬線(xiàn)”,《中華人民共和國(guó)道路交通安全法》 第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮 讓斑馬線(xiàn)”行為統(tǒng)計(jì)數(shù)據(jù):
(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線(xiàn)方程;
(2)預(yù)測(cè)該路口 9月份的不“禮讓斑馬線(xiàn)”違章駕駛員人數(shù);
(3)若從表中3、4月份分別抽取4人和2人,然后再?gòu)闹腥芜x2 人進(jìn)行交規(guī)調(diào)查,求抽到的兩人恰好來(lái)自同一月份的概率.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),直線(xiàn)與軸交于點(diǎn),且直線(xiàn)恰好平分.
(1)求的值;
(2)設(shè)是直線(xiàn)上一點(diǎn),直線(xiàn)交拋物線(xiàn)于另一點(diǎn),直線(xiàn)交直線(xiàn)于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體中,為正方形,,二面角的余弦值為,且.
(1)證明:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某池塘里浮萍的面積(單位:)與時(shí)間(單位:月)的關(guān)系為.關(guān)于下列說(shuō)法正確的是( )
A.浮萍每月的增長(zhǎng)率為
B.浮萍每月增加的面積都相等
C.第個(gè)月時(shí),浮萍面積不超過(guò)
D.若浮萍蔓延到、、所經(jīng)過(guò)的時(shí)間分別是、、,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)、分別是橢圓的左、右焦點(diǎn).若是該橢圓上的一個(gè)動(dòng)點(diǎn),的最大值為1.
(1)求橢圓的方程;
(2)設(shè)直線(xiàn)與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為(與不重合),則直線(xiàn)與軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫(xiě)出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年3月智能共享單車(chē)項(xiàng)目正式登陸某市,兩種車(chē)型“小綠車(chē)”、“小黃車(chē)”采用分時(shí)段計(jì)費(fèi)的方式,“小綠車(chē)”每30分鐘收費(fèi)元不足30分鐘的部分按30分鐘計(jì)算;“小黃車(chē)”每30分鐘收費(fèi)1元不足30分鐘的部分按30分鐘計(jì)算有甲、乙、丙三人相互獨(dú)立的到租車(chē)點(diǎn)租車(chē)騎行各租一車(chē)一次設(shè)甲、乙、丙不超過(guò)30分鐘還車(chē)的概率分別為,,,三人租車(chē)時(shí)間都不會(huì)超過(guò)60分鐘甲、乙均租用“小綠車(chē)”,丙租用“小黃車(chē)”.
求甲、乙兩人所付的費(fèi)用之和等于丙所付的費(fèi)用的概率;
2設(shè)甲、乙、丙三人所付的費(fèi)用之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,、分別為、的中點(diǎn),,,如圖.
(1)若交平面于點(diǎn),證明:、、三點(diǎn)共線(xiàn);
(2)線(xiàn)段上是否存在點(diǎn),使得平面平面,若存在確定的位置,若不存在說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com