分析:根據(jù)奇(偶)函數(shù)的定義判斷出函數(shù)是偶函數(shù),再判斷出函數(shù)的單調(diào)性,利用偶函數(shù)圖象關(guān)于y軸對(duì)稱,判斷所給的四個(gè)條件是否符合條件.
解答:解:∵函數(shù)f(-x)=sin
2(-x)+(-x)
2=sin
2x+x
2=f(x),
∴函數(shù)f(x)是偶函數(shù)
又∵y=sinx在
[0,]上是增函數(shù),y=x
2在
[0,]上是增函數(shù),
∴函數(shù)f(x)=sin
2x+x
2在
[0,]上是增函數(shù),在
[-,0]上是減函數(shù),
故①x
1<x
2,②|x
1|>x
2,③x
1<|x
2|中的條件都不能保證f(x
1)<f(x
2)成立,
只有當(dāng)|x
1|<|x
2|時(shí),即|④x
12<x
22保證f(x
1)<f(x
2)成立,
故選D.
點(diǎn)評(píng):本題考查了函數(shù)奇偶性和單調(diào)性的應(yīng)用,利用奇(偶)函數(shù)圖象的對(duì)稱性,將函數(shù)值的大小對(duì)應(yīng)的不等式進(jìn)行轉(zhuǎn)化,體現(xiàn)了轉(zhuǎn)化思想.