【題目】某工廠(chǎng)有兩臺(tái)不同機(jī)器A和B生產(chǎn)同一種產(chǎn)品各10萬(wàn)件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取二十件,進(jìn)行品質(zhì)鑒定,鑒定成績(jī)的莖葉圖如下所示:
該產(chǎn)品的質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)規(guī)定:鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為優(yōu)秀;鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為良好;鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
(1)從等級(jí)為優(yōu)秀的樣本中隨機(jī)抽取兩件,記為來(lái)自B機(jī)器生產(chǎn)的產(chǎn)品數(shù)量,寫(xiě)出的分布列,并求的數(shù)學(xué)期望;
(2)完成下列列聯(lián)表,以產(chǎn)品等級(jí)是否達(dá)到良好以上(含良好)為判斷依據(jù),判斷能不能在誤差不超過(guò)0.05的情況下,認(rèn)為B機(jī)器生產(chǎn)的產(chǎn)品比A機(jī)器生產(chǎn)的產(chǎn)品好;
A生產(chǎn)的產(chǎn)品 | B生產(chǎn)的產(chǎn)品 | 合計(jì) | |
良好以上(含良好) | |||
合格 | |||
合計(jì) |
(3)已知優(yōu)秀等級(jí)產(chǎn)品的利潤(rùn)為12元/件,良好等級(jí)產(chǎn)品的利潤(rùn)為10元/件,合格等級(jí)產(chǎn)品的利潤(rùn)為5元/件,A機(jī)器每生產(chǎn)10萬(wàn)件的成本為20萬(wàn)元,B機(jī)器每生產(chǎn)10萬(wàn)件的成本為30萬(wàn)元;該工廠(chǎng)決定:按樣本數(shù)據(jù)測(cè)算,兩種機(jī)器分別生產(chǎn)10萬(wàn)件產(chǎn)品,若收益之差達(dá)到5萬(wàn)元以上,則淘汰收益低的機(jī)器,若收益之差不超過(guò)5萬(wàn)元,則仍然保留原來(lái)的兩臺(tái)機(jī)器.你認(rèn)為該工廠(chǎng)會(huì)仍然保留原來(lái)的兩臺(tái)機(jī)器嗎?
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析
【解析】分析:(1)先計(jì)算出樣本中優(yōu)秀的產(chǎn)品有2個(gè)來(lái)自A機(jī)器,3個(gè)來(lái)自B 機(jī)器,再寫(xiě)出x的分布列和期望. (2)先完成2×2列聯(lián)表,再求出作出判斷.(3)先計(jì)算出A、B機(jī)器每生產(chǎn)10萬(wàn)件的利潤(rùn),再下結(jié)論.
詳解:(1)從莖葉圖可以知道,樣本中優(yōu)秀的產(chǎn)品有2個(gè)來(lái)自A機(jī)器,3個(gè)來(lái)自B 機(jī)器;
所以的可能取值為.
,,.
的分布列為:
0 | 1 | 2 | |
0.1 | 0.6 | 0.3 |
所以.
(2)由已知可得,列聯(lián)表為
A生產(chǎn)的產(chǎn)品 | B生產(chǎn)的產(chǎn)品 | 合計(jì) | |
良好以上 | 6 | 12 | 18 |
合格 | 14 | 8 | 22 |
合計(jì) | 20 | 20 | 40 |
,
所以不能在誤差不超過(guò)0.05的情況下,認(rèn)為產(chǎn)品等級(jí)是否達(dá)到良好以上與生產(chǎn)產(chǎn)品的機(jī)器有關(guān).
(3)A機(jī)器每生產(chǎn)10萬(wàn)件的利潤(rùn)為萬(wàn)元,
B機(jī)器每生產(chǎn)10萬(wàn)件的利潤(rùn)為萬(wàn)元,
所以,
所以該工廠(chǎng)不會(huì)仍然保留原來(lái)的兩臺(tái)機(jī)器,應(yīng)該會(huì)賣(mài)掉A機(jī)器,同時(shí)購(gòu)買(mǎi)一臺(tái)B機(jī)器.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我國(guó)自主研發(fā)的長(zhǎng)征系列火箭的頻頻發(fā)射成功,標(biāo)志著我國(guó)在該領(lǐng)域已逐步達(dá)到世界一流水平.火箭推進(jìn)劑的質(zhì)量為,去除推進(jìn)劑后的火箭有效載荷質(zhì)量為,火箭的飛行速度為,初始速度為,已知其關(guān)系式為齊奧爾科夫斯基公式:,其中是火箭發(fā)動(dòng)機(jī)噴流相對(duì)火箭的速度,假設(shè),,,是以為底的自然對(duì)數(shù),,.
(1)如果希望火箭飛行速度分別達(dá)到第一宇宙速度、第二宇宙速度、第三宇宙速度時(shí),求的值(精確到小數(shù)點(diǎn)后面1位).
(2)如果希望達(dá)到,但火箭起飛質(zhì)量最大值為,請(qǐng)問(wèn)的最小值為多少(精確到小數(shù)點(diǎn)后面1位)?由此指出其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,且).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最大值.
【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時(shí), ;當(dāng)時(shí), .
【解析】【試題分析】(I)利用的二階導(dǎo)數(shù)來(lái)研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對(duì)分類(lèi)討論求得函數(shù)在不同取值時(shí)的最大值.
【試題解析】
(Ⅰ),
設(shè) ,則.
∵, ,∴在上單調(diào)遞增,
從而得在上單調(diào)遞增,又∵,
∴當(dāng)時(shí), ,當(dāng)時(shí), ,
因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,
由此可知.
∵, ,
∴.
設(shè),
則 .
∵當(dāng)時(shí), ,∴在上單調(diào)遞增.
又∵,∴當(dāng)時(shí), ;當(dāng)時(shí), .
①當(dāng)時(shí), ,即,這時(shí), ;
②當(dāng)時(shí), ,即,這時(shí), .
綜上, 在上的最大值為:當(dāng)時(shí), ;
當(dāng)時(shí), .
[點(diǎn)睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點(diǎn)有關(guān)的參數(shù)范圍問(wèn)題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點(diǎn),并結(jié)合特殊點(diǎn),從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過(guò)對(duì)方程等價(jià)變形轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問(wèn)題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為 .
(Ⅰ) 寫(xiě)出圓 的參數(shù)方程和直線(xiàn)的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線(xiàn) 與軸和軸的交點(diǎn)分別為,為圓上的任意一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,為橢圓上不與左右頂點(diǎn)重合的任意一點(diǎn),,分別為的內(nèi)心、重心,當(dāng)軸時(shí),橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,為正三角形,為線(xiàn)段的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)若,求直線(xiàn)與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記焦點(diǎn)在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點(diǎn)為頂點(diǎn)作相似橢圓.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線(xiàn)與橢圓交于兩點(diǎn),且與橢圓僅有一個(gè)公共點(diǎn),試判斷的面積是否為定值(為坐標(biāo)原點(diǎn))?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在區(qū)間內(nèi)存在極值點(diǎn),且恰有唯一整數(shù)解使得,則的取值范圍是( )(其中為自然對(duì)數(shù)的底數(shù),)
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三人去某地務(wù)工,其工作受天氣影響,雨天不能出工,晴天才能出工.其計(jì)酬方式有兩種,方式一:雨天沒(méi)收入,晴天出工每天元;方式而:雨天每天元,晴天出工每天元;三人要選擇其中一種計(jì)酬方式,并打算在下個(gè)月(天)內(nèi)的晴天都出工,為此三人作了一些調(diào)查,甲以去年此月的下雨天數(shù)(天)為依據(jù)作出選擇;乙和丙在分析了當(dāng)?shù)亟?/span>年此月的下雨天數(shù)()的頻數(shù)分布表(見(jiàn)下表)后,乙以頻率最大的值為依據(jù)作出選擇,丙以的平均值為依據(jù)作出選擇.
8 | 9 | 10 | 11 | 12 | 13 | |
頻數(shù) | 3 | 1 | 2 | 0 | 2 | 1 |
(Ⅰ)試判斷甲、乙、丙選擇的計(jì)酬方式,并說(shuō)明理由;
(Ⅱ)根據(jù)統(tǒng)計(jì)范圍的大小,你覺(jué)得三人中誰(shuí)的依據(jù)更有指導(dǎo)意義?
(Ⅲ)以頻率作為概率,求未來(lái)三年中恰有兩年,此月下雨不超過(guò)天的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com