已知數(shù)列{an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和,S3=7,且a1+3,3a2,a3+4成等差數(shù)列.
(1)求數(shù)列{an}的通項;
(2)令bn=nan,求數(shù)列{bn}的前n項和Tn

解:(1)
解得a1=1,q=2
∴an=2n-1
(2)Tn=1+2×2+3×22+…+n×2n-1
2Tn=1×2+2×22+3×23+…+(n-1)×2n-1+n×2n
兩市相減得-Tn=1+2+22+…+2n-1-n×2n
∴Tn=(n-1)×2n+1
分析:(1)利用已知條件,列出關(guān)于等比數(shù)列的首項與公比的方程組,求出首項與公比,利用等比數(shù)列的通項公式求出通項.
(2)由于bn是有一等差數(shù)列與等比數(shù)列的積構(gòu)成的數(shù)列,利用錯位相減的方法求出前n項和.
點評:求數(shù)列的前n項和,一般先求出通項,根據(jù)通項的特點選擇合適的求和方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義一個“等積數(shù)列”:在一個數(shù)列中,如果每一項與它后一項的積都是同一常數(shù),那么這個數(shù)列叫“等積數(shù)列”,這個常數(shù)叫做這個數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,則這個數(shù)列的前n項和Sn的計算公式為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

按照等差數(shù)列的定義我們可以定義“等和數(shù)列”:在一個數(shù)列中,如果每一項與它的后一項的和都為同一個常數(shù),那么這個數(shù)列叫做等和數(shù)列,這個常數(shù)叫做該數(shù)列的公和.已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,那么a8的值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個數(shù)列中,如果?n∈N*,都有an•an+1•an+2=k(k為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,k叫做這個數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=3,公積為27,則a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個數(shù)列,如果每一項與它的后一項的和都為同一個常數(shù),那么這個數(shù)列叫做等和數(shù)列,這個常數(shù)叫做該數(shù)列的公和.已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,那么這個數(shù)列的前21項和S21的值為
52
52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列的定義為:在一個數(shù)列中,從第二項起,如果每一項與它的前一項的差都為同一個常數(shù),那么這個數(shù)列叫做等差數(shù)列,這個常數(shù)叫做該數(shù)列的公差.
(1)類比等差數(shù)列的定義給出“等和數(shù)列”的定義;
(2)已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,求 a18的值,并猜出這個數(shù)列的通項公式(不要求證明).

查看答案和解析>>

同步練習(xí)冊答案