(本小題滿分12分)某市十所重點中學(xué)進行高三聯(lián)考,共有5000名考生,為了了解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機抽出若干名學(xué)生在這次測試中的數(shù)學(xué)成績,制成如下頻率分布表:
       
(1)根據(jù)上面頻率分布表,求①,②,③,④處的數(shù)值
(2)在所給的坐標(biāo)系中畫出區(qū)間[80,150]上的頻率分布直方圖;
(3)從整體中任意抽取3個個體,成績落在[105,120]中的個體數(shù)目為ξ ,求ξ的分布列和數(shù)學(xué)期望.
(Ⅰ)3  (Ⅱ)  略(Ⅲ)Eξ= 
(1)3   0.025   0.1    120 ……4分
(2) (略)…………8分
(3) 根據(jù)幾何概型估計成績落在[105,120]中的概率為,
ξ
0
1
2
3
p




Eξ=                                                 …………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知隨機變量的分布列為

-2
-1
0
1
2
3
P






分別求出隨機變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若隨機變量,且,則的值是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)某籃球隊與其他6支籃球隊依次進行6場比賽,每場均決出勝負(fù),設(shè)這支籃球隊與其他籃球隊比賽中獲勝的事件是獨立的,并且獲勝的概率均為.
(1)求這支籃球隊首次獲勝前已經(jīng)負(fù)了兩場的概率;
(2)求這支籃球隊在6場比賽中恰好獲勝3場的概率;
(3)求這支籃球隊在6場比賽中獲勝場數(shù)的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某射擊測試規(guī)則為:每人最多射擊3次,擊中目標(biāo)即終止射擊,第次擊中目標(biāo)得分,3次均未擊中目標(biāo)得0分.已知某射手每次擊中目標(biāo)的概率為0.8,其各次射擊結(jié)果互不影響.
(Ⅰ)求該射手恰好射擊兩次的概率;
(Ⅱ)該射手的得分記為,求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一名學(xué)生每天騎車上學(xué),從他家到學(xué)校的途中有6個交通崗,假設(shè)他在各個交通崗遇到紅燈的事件是相互獨立的,并且概率都是.
(1)設(shè)X為這名學(xué)生在途中遇到紅燈的次數(shù),求X的分布列;
(2)設(shè)Y為這名學(xué)生在首次停車前經(jīng)過的路口數(shù),求Y的概率分布;
(3)求這名學(xué)生在途中至少遇到一次紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某一射手射擊所得的環(huán)數(shù)ξ的分布列如下:
ξ
4
5
6
7
8
9
10
P
0.02
0.04
0.06
0.09
0.28
0.29
0.22
求此射手“射擊一次命中環(huán)數(shù)≥7”的概率__________________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為
2
3
,中獎可以獲得2分;方案乙的中獎率為
2
5
,中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分?jǐn)?shù)兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為x,求x≤3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學(xué)期望較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某一中學(xué)生心理咨詢中心服務(wù)電話接通率為,某班3名同學(xué)商定明天分別就同一問題詢問服務(wù)中心,且每人只撥打一次,求他們中成功咨詢的人數(shù)X的分布列.

查看答案和解析>>

同步練習(xí)冊答案