△ABC中,過(guò)點(diǎn)A作AH⊥BC,垂足為H,BH=3,HC=2,則(
AB
3
+
AC
2
)•
BC
=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用數(shù)量積的定義、投影的定義即可得出.
解答: 解:如圖所示,
∵AH⊥BC,垂足為H,BH=3,HC=2,
∴(
AB
3
+
AC
2
)•
BC
=-
1
3
BA
BC
+
1
2
CA
CB

=-
1
3
|
BA
| |
BC
|cosB
+
1
2
|
CA
| |
CB
|cosC

=-
1
3
•|
BH
| |
BC
|
+
1
2
|
CH
| |
CB
|

=-
1
3
×3×|
BC
|+
1
2
×2×|
CB
|

=0.
故答案為:0.
點(diǎn)評(píng):本題考查了數(shù)量積的定義、投影的定義,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,某林場(chǎng)為了及時(shí)發(fā)現(xiàn)火情,在林場(chǎng)中設(shè)立了兩個(gè)觀測(cè)點(diǎn)A和B,某日兩個(gè)觀測(cè)點(diǎn)的林場(chǎng)人員分別觀測(cè)到C處有險(xiǎn)情.在A處觀測(cè)到火情發(fā)生在北偏西45°方向,在B點(diǎn)觀測(cè)火場(chǎng)C在北偏西75°方向,已知B在A的正東方向10km處,那么火場(chǎng)C到觀測(cè)點(diǎn)A的距離為
 
km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,令y=f(x),若f(a)>1,則a是取值范圍是
 
. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足x2+y2-6x-8y+23<0(x>3),則z=x-y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三棱錐S-ABC中,側(cè)棱SA,SB,SC兩兩垂直,且SA=a,SB=b,SC=c,現(xiàn)有下列命題:
①△ABC一定為銳角三角形;
②該三棱錐的每組對(duì)棱分別互相垂直;
③該三棱錐的外接球的半徑為
a2+b2+c2

④頂點(diǎn)S在平面ABC內(nèi)的射影一定為△ABC的重心.
其中真命題有
 
(填上你認(rèn)為的真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a2=-5,a7=a5+4,則a2012=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
πx(x≥0)
ex(x<0)
,若任意x∈[1-2a,2a-1]滿足不等式f(a(x+1)-x)≥[f(x)]a恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式x2<|x-1|+a的解集是區(qū)間(-3,3)的子集,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,5]
B、(-∞,5)
C、(-∞,7]
D、(-∞,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(x+y)n的展開(kāi)式中,若第8項(xiàng)系數(shù)最大,則n的值可能等于(  )
A、14,15
B、15,16
C、16,17
D、13,14,15

查看答案和解析>>

同步練習(xí)冊(cè)答案