已知數(shù)列{an}是等比數(shù)列,其前n項(xiàng)和為Sn,若a4=4a3,S4=1,則S8=( 。
A、257B、16
C、15D、256
考點(diǎn):等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)出等比數(shù)列的首項(xiàng)和公比,由已知求得首項(xiàng)和公比,代入等比數(shù)列的前n項(xiàng)和得答案.
解答: 解:設(shè)等比數(shù)列{an}的首項(xiàng)為a1,公比為q,
由a4=4a3,得q=
a4
a3
=4
,
再由S4=1,得
a1(1-44)
1-4
=1
,解得:a1=
3
255

S8=
3
255
(1-48)
1-4
=257

故選:A.
點(diǎn)評(píng):本題考查了等比數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的前n項(xiàng)和,是基礎(chǔ)的計(jì)算題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2
3
sinωx,cos2ωx),
b
=(cosωx,-1)(ω>0)
,函數(shù)f(x)=
a
b
,且其圖象的兩條相鄰對(duì)稱軸之間的距離是
π
4

(Ⅰ)求ω的值;
(Ⅱ)將函數(shù)f(x)圖象上的每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象,求y=g(x)在區(qū)間[0,
π
2
]
上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
x≥0
y≥x
4x+3y≤12
,則x+2y+3的取值范圍是( 。
A、[1,5]
B、[2,6]
C、[3,10]
D、[3,11]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x5-5x4+5x3+1,當(dāng)x∈[0,2]時(shí)函數(shù)f(x)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

近年來(lái),政府提倡低碳減排,某班同學(xué)利用寒假在兩個(gè)小區(qū)逐戶調(diào)查人們的生活習(xí)慣是否符合低碳觀念.若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”.?dāng)?shù)據(jù)如下表(計(jì)算過(guò)程把頻率當(dāng)成概率).B小區(qū)低碳族非低碳族頻率p0.80.2A小區(qū)低碳族非低碳族頻率p0.50.5
A小區(qū)低碳族非低碳族
頻率 p0.50.5
小區(qū)低碳族非低碳族
頻率 p0.80.2
(Ⅰ) 如果甲、乙來(lái)自A小區(qū),丙、丁來(lái)自B小區(qū),求這4人中恰有2人是低碳族的概率;
(Ⅱ)A小區(qū)經(jīng)過(guò)大力宣傳,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后隨機(jī)地從A小區(qū)中任選3個(gè)人,記X表示3個(gè)人中低碳族人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)滿足,f(x)=
1
3
x3-f′(1)•x2-x,則f(3)的值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,3),B(-2,-1).若直線l:y=k(x-2)+1與線段AB相交,則k的取值范圍是(  )
A、[
1
2
,+∞)
B、(-∞,-2]
C、(-∞,-2]∪[
1
2
,+∞)
D、[-2,
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a、b、c,且cos2B+cosB+cos(A-C)=1.
(Ⅰ)證明:a、b、c成等比數(shù)列;
(Ⅱ)若a+c=b,cosB=
3
4
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2+
1
x

(1)求當(dāng)x<0時(shí),f(x)的解析式;
(2)求f(x)解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案