設(shè)為等比數(shù)列,為其前項和,已知.
(1)求的通項公式;
(2)求數(shù)列的前項和.
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,且對任意的,都有.
(1)若{bn }的首項為4,公比為2,求數(shù)列{an+bn}的前n項和Sn;
(2)若 ,試探究:數(shù)列{bn}中是否存在某一項,它可以表示為該數(shù)列中其它項的和?若存在,請求出該項;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
數(shù)列{an}的前n項和記為Sn,a1=t,點(Sn,an+1)在直線y=2x+1上,n∈N*.
(1)當實數(shù)t為何值時,數(shù)列{an}是等比數(shù)列?
(2)在(1)的結(jié)論下,設(shè)bn=log3an+1,Tn是數(shù)列的前n項和, 求T2 013的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
數(shù)列的首項為(),前項和為,且().設(shè),().
(1)求數(shù)列的通項公式;
(2)當時,若對任意,恒成立,求的取值范圍;
(3)當時,試求三個正數(shù),,的一組值,使得為等比數(shù)列,且,,成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)無窮等比數(shù)列的公比為q,且,表示不超過實數(shù)的最大整數(shù)(如),記,數(shù)列的前項和為,數(shù)列的前項和為.
(Ⅰ)若,求;
(Ⅱ)證明: ()的充分必要條件為;
(Ⅲ)若對于任意不超過的正整數(shù)n,都有,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{an}的前n項和為Sn,若S1=1,S2=2,且Sn+1-3Sn+2Sn-1=0(n∈N*且n≥2),求該數(shù)列的通項公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com