年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(1)如果分別以t,α為參數(shù),則所給的參數(shù)方程表示的圖象分別是什么?請(qǐng)分別把它們轉(zhuǎn)化為普通方程.(α為參數(shù)時(shí),設(shè)t>0,t為參數(shù)時(shí),設(shè)α≠)
(2)求上述直線截上述曲線所得的弦長(zhǎng).
(3)根據(jù)上述求解過程總結(jié)出一個(gè)結(jié)論,并用基本語句編寫一個(gè)算法計(jì)算弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)文(陜西卷)解析版 題型:填空題
(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(不等式選做題)若不等式對(duì)任意R恒成立,則的取值范圍是 .
B.(幾何證明選做題)如圖,∠B=∠D,,,且AB=6,AC=4,AD=12,則AE= .
C.(坐標(biāo)系與參數(shù)方程選做題)直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)A,B分別在曲線:(為參數(shù))和曲線:上,則的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(陜西卷)解析版 題型:填空題
(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(不等式選做題)若關(guān)于的不等式存在實(shí)數(shù)解,則實(shí)數(shù)的取值范圍是 .
B.(幾何證明選做題)如圖,∠B=∠D,,,且AB=6,AC=4,AD=12,則BE= .
C.(坐標(biāo)系與參數(shù)方程選做題)直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)A,B分別在曲線:(為參數(shù))和曲線:上,則的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年福建省漳州一中高中畢業(yè)班質(zhì)量檢查(理) 題型:解答題
本題有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計(jì)分
(1)選修4-2;矩陣與變換
二階矩陣對(duì)應(yīng)的變換將向量,分別變換成向量,,直線 在的變換下所得到的直線的方程是,求直線的方程。
(2)選修4-4;坐標(biāo)系與參數(shù)方程¥¥
過點(diǎn)且傾斜角為的直線和曲線:(為參數(shù))相交于兩點(diǎn),求線段的長(zhǎng)。
(3)選修4-5;不等式選講
若不等式,對(duì)滿足的一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com