【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.]

(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

(2)試估計(jì)該公司投入萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

(3)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬(wàn)元)

1

2

3

4

5

銷售收益 (單位:萬(wàn)元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

【答案】(1)2;(2);(3).

【解析】試題分析】(1)借助頻率分布直方圖求解;(2)依據(jù)頻率分布表,運(yùn)用加權(quán)平均數(shù)的計(jì)算公式求解;(3)先計(jì)算平均數(shù),再求出回歸方程的斜率(系數(shù))

(1)設(shè)各小長(zhǎng)方形的寬度為,由頻率分布直方圖中各小長(zhǎng)方形的面積總和為1,可知,故,即圖中各小長(zhǎng)方形的寬度為2.

(2)由(1)知各小組依次是,其中點(diǎn)分別為,

對(duì)應(yīng)的頻率分別為,

故可估計(jì)平均值為.

(3)由(2)可知空白欄中填5.

由題意可知, ,

,

,

根據(jù)公式,可求得

,

所以所求的回歸直線方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的不等式2x2﹣8x﹣4﹣a>0在1<x<4內(nèi)有解,則a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓和定點(diǎn),由圓外一點(diǎn)向圓引切線,切點(diǎn)為,且滿足

(1)求實(shí)數(shù)滿足的等量關(guān)系;

(2)求線段長(zhǎng)的最小值

(3)若以為圓心所作的圓與圓有公共點(diǎn),試求半徑取最小值時(shí)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x﹣4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=﹣x+5上,求圓C的方程;
(2)在(1)的條件下,過(guò)點(diǎn)A作圓C的切線,求切線的方程;
(3)若圓C上存在點(diǎn)M,使|MA|=|MO|,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“累積凈化量”是空氣凈化器質(zhì)量的一個(gè)重要衡量指標(biāo),它是指空氣凈化從開始使用到凈化效率為50%時(shí)對(duì)顆粒物的累積凈化量,以克表示,根據(jù)《空氣凈化器》國(guó)家標(biāo)準(zhǔn),對(duì)空氣凈化器的累計(jì)凈化量有如下等級(jí)劃分:

累積凈化量(克)

12以上

等級(jí)

為了了解一批空氣凈化器(共5000臺(tái))的質(zhì)量,隨機(jī)抽取臺(tái)機(jī)器作為樣本進(jìn)行估計(jì),已知這臺(tái)機(jī)器的累積凈化量都分布在區(qū)間中,按照、、、、均勻分組,其中累積凈化量在的所有數(shù)據(jù)有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:

(1)求的值及頻率分布直方圖中的值;

(2)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共5000臺(tái))中等級(jí)為的空氣凈化器有多少臺(tái)?

(3)從累積凈化量在的樣本中隨機(jī)抽取2臺(tái),求恰好有1臺(tái)等級(jí)為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn)及橢圓,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于, 兩點(diǎn).

1)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;

(2)設(shè)點(diǎn)的坐標(biāo)為,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程的兩個(gè)根分別為其中 ,則的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), .

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

(2)若函數(shù)有兩個(gè)零點(diǎn),試求的取值范圍;

(3)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠DAB=60°.側(cè)面PAD為正三角形,且平面PAD⊥平面ABCD,則下列說(shuō)法錯(cuò)誤的是( 。

A.在棱AD上存在點(diǎn)M,使AD⊥平面PMB
B.異面直線AD與PB所成的角為90°
C.二面角P﹣BC﹣A的大小為45°
D.BD⊥平面PAC

查看答案和解析>>

同步練習(xí)冊(cè)答案