設(shè)等差數(shù)列的前項(xiàng)和為,若,,則當(dāng)取最小值時(shí),等于
A.6B.7 C.8D.9
A
條件已提供了首項(xiàng),故用“a1,d”法,再轉(zhuǎn)化為關(guān)于n的二次函數(shù)解得.
解答:解:設(shè)該數(shù)列的公差為d,則a4+a6=2a1+8d=2×(-11)+8d=-6,解得d=2,
所以Sn=-11n+×2=n2-12n=(n-6)2-36,所以當(dāng)n=6時(shí),Sn取最小值.
故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)數(shù)列上,
(I)求數(shù)列的通項(xiàng)公式;
(II)若

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分18分)本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分8分,第3小題滿(mǎn)分6分.
已知負(fù)數(shù)和正數(shù),且對(duì)任意的正整數(shù)n,當(dāng)≥0時(shí), 有[, ]=
[, ];當(dāng)<0時(shí), 有[, ]= [, ].
(1)求證數(shù)列{}是等比數(shù)列;
(2)若,求證;
(3)是否存在,使得數(shù)列為常數(shù)數(shù)列?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列的前項(xiàng)和,則=(     )
A.37B.27C.64D.91

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)等差數(shù)列)的前n項(xiàng)和為,該數(shù)列是單調(diào)遞增數(shù)列,若,則的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)已知函數(shù)的導(dǎo)函數(shù),數(shù)列的前項(xiàng)和為,點(diǎn)均在函數(shù)的圖象上.
(1)求數(shù)列的通項(xiàng)公式及的最大值;
(2)令,其中,求的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿(mǎn)足
(I)求數(shù)列的通項(xiàng)公式;
(II)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列的前n項(xiàng)和為,且, 則等于  
A.4B.2C.1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

.設(shè),對(duì)的任意非空子集A,定義為A中的最小元素,當(dāng)A取遍的所有非空子集時(shí),對(duì)應(yīng)的的和為,則:①__________②___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案