精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)= sinωx﹣ cosωx(ω<0),若y=f(x+ )的圖象與y=f(x﹣ )的圖象重合,記ω的最大值為ω0 , 函數g(x)=cos(ω0x﹣ )的單調遞增區(qū)間為(
A.[﹣ π+ ,﹣ + ](k∈Z)
B.[﹣ + , + ](k∈Z)
C.[﹣ π+2kπ,﹣ +2kπ](k∈Z)
D.[﹣ +2kπ,﹣ +2kπ](k∈Z)

【答案】A
【解析】解:函數f(x)= sinωx﹣ cosωx(ω<0)=2sin(ωx﹣ ), 若y=f(x+ )的圖象與y=f(x﹣ )的圖象重合,
為函數f(x)的周期,即 =k| |,∴ω=±4k,k∈Z.
記ω的最大值為ω0 , 則ω0=﹣4,
函數g(x)=cos(ω0x﹣ )=cos(﹣4x﹣ )=cos(4k+ ).
令2kπ﹣π≤4x+ ≤2kπ,求得 ≤x≤ ,
故函數g(x)的增區(qū)間為[ , ],k∈Z.
故選:A.
利用三角恒等變換化簡f(x)的解析式,利用正弦函數的周期性求得ω的值,再利用余弦函數的單調性,求得函數g(x)的增區(qū)間.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐 中,底面 為梯形, 底面 , .過 作一個平面 使得 平面 .

(1)求平面 將四棱錐 分成兩部分幾何體的體積之比;
(2)若平面 與平面 之間的距離為 ,求直線 與平面 所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某旅游愛好者計劃從3個亞洲國家 和3個歐洲國家 中選擇2個國家去旅游.
(Ⅰ)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;
(Ⅱ)若從亞洲國家和歐洲國家中各任選1個,求這2個國家包括 但不包括 的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學從高三男生中隨機抽取100名學生,將他們的身高數據進行整理,得到下側的頻率分布表.

組號

分組

頻率

1

[160,165)

0.05

2

0.35

3

0.3

4

0.2

5

0.1

合計

1.00

Ⅰ)為了能對學生的體能做進一步了解,該校決定在第3,4,5組中用分層抽樣的方法抽取6名學生進行體能測試,問第3,4,5組每組各應抽取多少名學生進行測試;

Ⅱ)在(Ⅰ)的前提下,學校決定在6名學生中隨機抽取2名學生進行引體向上測試,求第3組中至少有一名學生被抽中的概率;

試估計該中學高三年級男生身高的中位數位于第幾組中,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓 的方程為 ,直線 的方程為 ,點 在直線 上,過點 作圓 的切線 ,切點為 .
(1)若點 的坐標為 ,求切線 的方程;
(2)求四邊形 面積的最小值;
(3)求證:經過 三點的圓必過定點,并求出所有定點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A,B,C所對應的邊分別為a,b,c,且 .
(1)求角B的大。
(2)若b= ,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為調查高一、高二學生周日在家學習用時情況,隨機抽取了高一、高二各人,對他們的學習時間進行了統(tǒng)計,分別得到了高一學生學習時間(單位:小時)的頻數分布表和高二學生學習時間的頻率分布直方圖.

高一學生學習時間的頻數分布表(學習時間均在區(qū)間內):

學習時間

頻數

3

1

8

4

2

2

高二學生學習時間的頻率分布直方圖:

(1)求高二學生學習時間的頻率分布直方圖中的,并根據此頻率分布直方圖估計該校高二學生學習時間的中位數;

(2)利用分層抽樣的方法,從高一學生學習時間在,的兩組里隨機抽取,再從這人中隨機抽取,求學習時間在這一組中至少有人被抽中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=f(x),f(0)=-2,且對 ,y R,都有f(x+y)-f(y)=(x+2y+1)x.
(1)求f(x)的表達式;
(2)已知關于x的不等式f(x)-ax+a+1 的解集為A,若A[2,3],求實數a的取值范圍;
(3)已知數列{ }中, , ,記 ,且數列{ 的前n項和為
求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求下列直線方程

(1)求過點且與圓相切的直線方程;

(2)一直線經過點,被圓截得的弦長為8,求此弦所在直線方程.

查看答案和解析>>

同步練習冊答案