【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線(xiàn)的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)寫(xiě)出曲線(xiàn)的參數(shù)方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在曲線(xiàn)上,點(diǎn)在曲線(xiàn)上,求的最大值.
【答案】(1)的參數(shù)方程為 (為參數(shù)), 的直角坐標(biāo)方程為;(2).
【解析】試題分析:
(Ⅰ)利用極坐標(biāo)與直角坐標(biāo)、參數(shù)方程與直角坐標(biāo)方程的轉(zhuǎn)化關(guān)系可得曲線(xiàn)的參數(shù)方程為(為參數(shù)),的直角坐標(biāo)方程為.
(Ⅱ)曲線(xiàn)是以 為圓心, 為半徑的圓.設(shè)出點(diǎn)的的坐標(biāo),結(jié)合題意得到三角函數(shù)式: .結(jié)合二次型復(fù)合函數(shù)的性質(zhì)可得.
試題解析:
(Ⅰ)曲線(xiàn)的參數(shù)方程為(為參數(shù)),
的直角坐標(biāo)方程為,即.
(Ⅱ)由(Ⅰ)知,曲線(xiàn)是以 為圓心, 為半徑的圓.
設(shè),
則
.
當(dāng)時(shí), 取得最大值.
又因?yàn)?/span>,當(dāng)且僅當(dāng)三點(diǎn)共線(xiàn),且在線(xiàn)段上時(shí),等號(hào)成立.
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線(xiàn)下分店,計(jì)劃在市的區(qū)開(kāi)設(shè)分店,為了確定在該區(qū)開(kāi)設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開(kāi)設(shè)分店聽(tīng)其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開(kāi)設(shè)分店的個(gè)數(shù), 表示這個(gè)個(gè)分店的年收入之和.
(個(gè)) | 2 | 3 | 4 | 5 | 6 |
(百萬(wàn)元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司已經(jīng)過(guò)初步判斷,可用線(xiàn)性回歸模型擬合與的關(guān)系,求關(guān)于的線(xiàn)性回歸方程;
(2)假設(shè)該公司在區(qū)獲得的總年利潤(rùn)(單位:百萬(wàn)元)與之間的關(guān)系為,請(qǐng)結(jié)合(1)中的線(xiàn)性回歸方程,估算該公司應(yīng)在區(qū)開(kāi)設(shè)多少個(gè)分時(shí),才能使區(qū)平均每個(gè)分店的年利潤(rùn)最大?
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn)及橢圓,過(guò)點(diǎn)的動(dòng)直線(xiàn)與橢圓相交于, 兩點(diǎn).
(1)若線(xiàn)段中點(diǎn)的橫坐標(biāo)是,求直線(xiàn)的方程;
(2)設(shè)點(diǎn)的坐標(biāo)為,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的首項(xiàng)為a,公差為b,方程ax2-3x+2=0的解為1和b,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿(mǎn)足bn=an·2n,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), , .
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線(xiàn)方程;
(2)若函數(shù)有兩個(gè)零點(diǎn),試求的取值范圍;
(3)證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖. 圖中A點(diǎn)表示十月的平均最高氣溫約為,B點(diǎn)表示四月的平均最低氣溫約為. 下面敘述不正確的是 ( )
A. 各月的平均最低氣溫都在以上
B. 七月的平均溫差比一月的平均溫差大
C. 三月和十一月的平均最高氣溫基本相同
D. 平均最高氣溫高于的月份有5個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知多面體中,四邊形為平行四邊形, 平面,且, , , .
(Ⅰ)求證:平面平面;
(Ⅱ)若直線(xiàn)與平面所成的角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,平面平面,三角形為等邊三角形, ,且.
(1)求證: 平面;
(2)求證:平面平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一枚質(zhì)地均勻且四個(gè)面上分別標(biāo)有1,2,3,4的正四面體先后拋擲兩次,其底面落于桌面上,記第一次朝下面的數(shù)字為,第二次朝下面的數(shù)字為.用表示一個(gè)基本事件.
請(qǐng)寫(xiě)出所有基本事件;
求滿(mǎn)足條件“”為整數(shù)的事件的概率;
求滿(mǎn)足條件“”的事件的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com