【題目】以 A 為圓心, 以為半徑的圓外有一點 B , 已知 =2sinθ.設(shè)過點B且與⊙A 外切于點T的圓的圓心為 M.
(1)當(dāng) θ取某個值時, 說明點 M 的軌跡P 是什么曲線;
(2)點M 是軌跡 P上的動點, 點N 是 ⊙A上的動點, 把的最小值記為(不要求證明), 求的取值范圍;
(3)若將題設(shè)條件中的θ的范圍改為,點 B 的位置改為⊙A內(nèi) , 其它條件不變,點 M的軌跡記為 P .試提出一個和(2)具有相同結(jié)構(gòu)的有意義的問題(不要求解答).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】供電部門對某社區(qū)1000位居民2018年12月份的用電情況進(jìn)行統(tǒng)計后,按用電量分為,,,,五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是( )
A.按用電量分組中,人數(shù)最多的一組有400人
B.12月份用電不低于20度的有500人
C.12月份人均用電量為25度
D.12月份的用電量的中位數(shù)是20度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開設(shè)了射擊選修課,規(guī)定向、兩個靶進(jìn)行射擊:先向靶射擊一次,命中得1分,沒有命中得0分,向靶連續(xù)射擊兩次,每命中一次得2分,沒命中得0分;小明同學(xué)經(jīng)訓(xùn)練可知:向靶射擊,命中的概率為,向靶射擊,命中的概率為,假設(shè)小明同學(xué)每次射擊的結(jié)果相互獨立.現(xiàn)對小明同學(xué)進(jìn)行以上三次射擊的考核.
(1)求小明同學(xué)恰好命中一次的概率;
(2)求小明同學(xué)獲得總分的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一臺計算機(jī)裝置的示意圖如 圖 4 所 示,其中 J1、J2表示數(shù)據(jù)入口, C是計算結(jié)果的出口.計算過程是由 J1、J2分別輸入自然數(shù) m 和n ,經(jīng)過計算后得自然數(shù) k由C輸出.若此種裝置滿足以下三個性質(zhì):
①J1、J2分別輸入 1 ,則輸出結(jié)果 1;
②若J1 輸入任何固定自然數(shù)不變, J2輸入自然數(shù)增大 1,則輸出結(jié)果比原來增大 2;
③若 J2輸入 1, J1 輸入自然數(shù)增大 1,則輸出結(jié)果為原來的 2 倍.
試問:(1)若J1輸入 1, J2輸入自然數(shù) n , 則輸出結(jié)果為多少?
(2)若J2輸入 1 , J1輸入自然數(shù) m ,則輸出結(jié)果為多少?
(3)若J1 輸入自然數(shù)2002 , J2輸入自然數(shù) 9,則輸出結(jié)果為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,各個側(cè)面均是邊長為的正方形,為線段的中點.
(1)求證:直線平面;
(2)求直線與平面所成角的余弦值;
(3)設(shè)為線段上任意一點,在內(nèi)的平面區(qū)域(包括邊界)是否存在點,使,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的不斷發(fā)展,手機(jī)打車軟件APP也不斷推出.在某地有AB兩款打車APP,為了調(diào)查這兩款軟件叫車后等候的時間,用這兩款APP分別隨機(jī)叫了50輛車,記錄了候車時間如下表:
A款軟件:
候車時間(分鐘) | ||||||
車輛數(shù) | 2 | 12 | 8 | 12 | 14 | 2 |
B款軟件:
候車時間(分鐘) | ||||||
車輛數(shù) | 2 | 10 | 28 | 7 | 2 | 1 |
(1)試畫出A款軟件候車時間的頻率分布直方圖,并估計它的眾數(shù)及中位數(shù);
(2)根據(jù)題中所給的數(shù)據(jù),將頻率視為概率
(i)能否認(rèn)為B款軟件打車的候車時間不超過6分鐘的概率達(dá)到了75%以上?
(ii)僅從兩款軟件的平均候車時間來看,你會選擇哪款打車軟件?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】紙上寫有1,2,…,n這n個正整數(shù),第1步劃去前面4個數(shù)1,2,3,4在n的后面寫上劃去的4個數(shù)的和10;第2步再劃去前面的4個數(shù)5,6,7,8在最后寫上劃去的4個數(shù)的和26:如此下去(即每步劃去前面4個數(shù),在最后面寫上劃去的4個數(shù)的和)
(1)若最后只剩下一個數(shù),則n應(yīng)滿足的充要條件是什么?
(2)取n=2002到最后只剩下一個數(shù)為止,所有寫出的數(shù)(包括原來的1,2…,2002)的總和是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com