如圖,在矩形ABCD中,AB=2AD=2,O為CD的中點(diǎn),沿AO將△AOD折起,使DB=.
(1)求證:平面AOD⊥平面ABCO;
(2)求直線BC與平面ABD所成角的正弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在中,,,點(diǎn)在邊上,設(shè),過點(diǎn)作交于,作交于。沿將翻折成使平面平面;沿將翻折成使平面平面.
(1)求證:平面;
(2)是否存在正實(shí)數(shù),使得二面角的大小為?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB=AB.
(1)證明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC的中點(diǎn).
(1)求證:B1C∥平面A1BD;
(2)求平面A1DB與平面DBB1夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐P-ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC與BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2,E,F分別是AB,AP的中點(diǎn).
(1)求證:AC⊥EF;
(2)求二面角F-OE-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點(diǎn)E在線段PC上,PC⊥平面BDE.
(1) 證明:BD⊥平面PAC;
(2) 若PA=1,AD=2,求二面角B-PC-A的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平行四邊形ABCD中,AB=6,AD=10,BD=8,E是線段AD的中點(diǎn).沿BD將△BCD翻折到△,使得平面⊥平面ABD.
(Ⅰ)求證:平面ABD;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com