【題目】兩個(gè)函數(shù)在公共定義域上恒有,則稱這兩個(gè)函數(shù)是該區(qū)間上的“同步函數(shù)”.

(1)試判斷是否為公共定義域上的“同步函數(shù)”?

(2)已知函數(shù)是公共區(qū)域上的“同步函數(shù)”,求實(shí)數(shù)的取值范圍;

(3)已知上是“同步函數(shù)”,求實(shí)數(shù)的取值范圍。

【答案】(1)不是;(2);(3).

【解析】

1)由反正弦函數(shù)的定義域和值域、指數(shù)函數(shù)的單調(diào)性,結(jié)合新定義即可判斷;

2)分別討論,對(duì)應(yīng)方程的系數(shù)是否成比例,以及判別式的符號(hào),解不等式,結(jié)合新定義,即可得到所求范圍;

3)運(yùn)用對(duì)數(shù)函數(shù)的定義域可得,求得的零點(diǎn),由于,討論當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),由不等式的性質(zhì)即可得到所求范圍.

(1)遞增,遞減,

當(dāng)時(shí),,時(shí),,不滿足,

不為公共定義域上的“同步函數(shù)”;

(2)是公共區(qū)域上的“同步函數(shù)”,

可得在公共定義域上,

,對(duì)應(yīng)的方程是同解方程,

,解得.

.

,對(duì)應(yīng)的方程不是同解方程,

要保證對(duì)于定義域內(nèi)的任意實(shí)數(shù),函數(shù)值乘積均為正,

則需要分子分母的判別式均小于,

,

解得.

的范圍是.

當(dāng)時(shí),函數(shù)化為,

大于等于,的判別式小于,大于恒成立,函數(shù)值乘積恒非負(fù).

綜上,則實(shí)數(shù)a的取值范圍是;

(3)由定義域可得,由題意可得,

,可得,

,可得,

由題意可得兩零點(diǎn)之間無正整數(shù),

由于,所以當(dāng)時(shí),,不滿足題意;

當(dāng)時(shí),,不滿足題意;

當(dāng)時(shí),,滿足題意.

的范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)對(duì)任意的滿足:,當(dāng)時(shí),

1)求出函數(shù)在R上零點(diǎn);

2)求滿足不等式的實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)對(duì)任意實(shí)數(shù)滿足:,且,并且當(dāng)時(shí),.給出如下結(jié)論:①函數(shù)是偶函數(shù);②函數(shù)上單調(diào)遞增;③函數(shù)是以2為周期的周期函數(shù);④.其中正確的結(jié)論是(

A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】遼寧省六校協(xié)作體(葫蘆島第一高中、東港二中、鳳城一中、北鎮(zhèn)高中、瓦房店高中、丹東四中)中的某校理科實(shí)驗(yàn)班的100名學(xué)生期中考試的語文、數(shù)學(xué)成績都不低于100分,其中語文成績的頻率分布直方圖如圖所示,成績分組區(qū)間是:[100,110),[110,120),[120,130),[130,140),[140,150]

100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示:

分組區(qū)間

[100,110

[110,120

[120,130

[130,140

1:2

2:1

3:4

1:1

1)估計(jì)這100名學(xué)生語文成績的平均數(shù)、方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);

2)從數(shù)學(xué)成績?cè)?/span>[130,150] 的學(xué)生中隨機(jī)選取2人,該2人中數(shù)學(xué)成績?cè)?/span>[140,150]的人數(shù)為,求的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).(是自然對(duì)數(shù)的底數(shù),

1)討論的單調(diào)性,并證明有且僅有兩個(gè)零點(diǎn);

2)設(shè)的一個(gè)零點(diǎn),證明曲線在點(diǎn)處的切線也是曲線的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中真命題是  

A. 同垂直于一直線的兩條直線互相平行

B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱

C. 過空間任一點(diǎn)與兩條異面直線都垂直的直線有且只有一條

D. 過球面上任意兩點(diǎn)的大圓有且只有一個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,中點(diǎn).

1)求證:平面

2)若點(diǎn)是棱的中點(diǎn),求異面直線的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,記.

1)求曲線處的切線方程;

2)求函數(shù)的單調(diào)區(qū)間;

3)當(dāng)時(shí),若函數(shù)沒有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】嫦娥四號(hào)月球探測(cè)器于2018年12月8日搭載長征三號(hào)乙運(yùn)載火箭在西昌衛(wèi)星發(fā)射中心發(fā)射.12日下午4點(diǎn)43分左右,嫦娥四號(hào)順利進(jìn)入了以月球球心為一個(gè)焦點(diǎn)的橢圓形軌道,如圖中軌道③所示,其近月點(diǎn)與月球表面距離為公里,遠(yuǎn)月點(diǎn)與月球表面距離為公里.已知月球的直徑為公里,則該橢圓形軌道的離心率約為

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案