【題目】某測試團隊為了研究“飲酒”對“駕車安全”的影響,隨機選取100名駕駛員先后在無酒狀態(tài)、酒后狀態(tài)下進行“停車距離”測試.測試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子停下所需的距離),無酒狀態(tài)與酒后狀態(tài)下的實驗數(shù)據(jù)分別列于表1和表2.

表1:

停車距離(米)

頻數(shù)

26

40

24

8

2

表2:

平均每毫升血液酒精含量(毫克)

10

30

50

70

90

平均停車距離(米)

30

50

60

70

90

請根據(jù)表1,表2回答以下問題.

(1)根據(jù)表1估計駕駛員無酒狀態(tài)下停車距離的平均數(shù);

(2)根據(jù)最小二乘法,由表2的數(shù)據(jù)計算關于的回歸方程.

(3)該測試團隊認為:駕駛員酒后駕車的“平均停車距離”大于(1)中無酒狀態(tài)下的停車距離平均數(shù)的3倍,則認定駕駛員是“醉駕”.請根據(jù)(2)中的回歸方程,預測當每毫升血液酒精含量大于多少毫克時為“醉駕”?參考公式:

,.

【答案】(1)27,(2) (3) 當每毫升血液酒精含量大于80毫克時認定為“醉駕”

【解析】分析:(1)根據(jù)平均數(shù)的計算公式得到27為均值;(2)根據(jù)公式得到,,進而得到回歸方程;(3)由第二問可得到令,得

解得,可得到結論.

詳解:

(1)依題意,駕駛員無酒狀態(tài)下停車距離的平均數(shù)為

.

(2)依題意,可知,

,,

所以回歸直線方程為.

(3)由(1)知當時認定駕駛員是“醉駕”.

,得

解得,

當每毫升血液酒精含量大于80毫克時認定為“醉駕”.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點在正方體的面對角線上運動,則下列四個命題:

③平面平面

④三棱錐的體積不變.

其中正確的命題序號是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(
A.?x,y∈R,若x+y≠0,則x≠1且y≠﹣1
B.a∈R,“ ”是“a>1”的必要不充分條件
C.命題“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
D.設隨機變量X~N(1,52),若P(X<0)=P(X>a﹣2),則實數(shù)a的值為2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個口袋中裝有大小、材質(zhì)都相同的個紅球,個黑球和個白球,從口袋中一次摸出一個球,連續(xù)摸球兩次

)如果摸出后不放回,求第一次摸出黑球,第二次摸出白球的概率;

)如果摸出后放回,求恰有一次摸到黑球的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切且被軸截得的弦長為,圓的面積小于13.

(Ⅰ)求圓的標準方程;

(Ⅱ)設過點的直線與圓交于不同的兩點,以為鄰邊作平行四邊形.是否存在這樣的直線,使得直線恰好平行?如果存在,求出的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某校期中考試數(shù)學試卷中,抽取樣本,考察成績分布,將樣本分成5組,繪成頻率分布直方圖,圖中各小組的長方形面積之比從左至右依次為1:3:6:4:2,第一組的頻數(shù)是4.

1)求樣本容量及各組對應的頻率;

2)根據(jù)頻率分布直方圖估計成績的平均分和中位數(shù)(結果保留兩位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,以x軸正半軸為始邊作銳角α,其終邊與單位圓交于點A.以OA為始邊作銳角β,其終邊與單位圓交于點B,AB=
(1)求cosβ的值;
(2)若點A的橫坐標為 ,求點B的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在等腰梯形中,,,點的中點.將沿折起,使點到達的位置,得到如圖所示的四棱錐,點為棱的中點.

(1)求證:平面;

(2)若平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應抽取多少戶?

查看答案和解析>>

同步練習冊答案