設集合A={1,2},集合B={3,4},則從集合A到B的不同映射共有
4
4
個.
分析:由映射的定義知集合A中每一個元素在集合B中有唯一的元素和它對應,A中1在集合B中有3或4與1對應,有兩種選擇,同理集合A中2也有兩種選擇,由分步乘法原理求解即可.
解答:解:由映射的定義知A中1在集合B中有3或4與1對應,有兩種選擇,
同理集合A中2也有兩種選擇,
由分步乘法原理得從集合A={1,2}到集合B={3,4}的不同映射共有2×2=4個
故答案為:4
點評:本題考查映射的定義和個數(shù)計算、乘法原理,正確把握映射的定義是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

1、設集合A={1,2,3},滿足B=A∩B的集合B的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={1,2},B={1,2,3},分別從集合A和B中隨機取一個數(shù)a和b.
(Ⅰ)若向量
m
=(a,b),
n
=(1,-1)
,求向量
m
n
的夾角為銳角的概率;
(Ⅱ) 記點P(a,b),則點P(a,b)落在直線x+y=n上為事件Cn(2≤n≤5,n∈N),求使事件Cn的概率最大的n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={1,2},B={1,2,3},分別從集合A和B中隨機取一個數(shù)a和b,確定平面上的一個點P(a,b),記“點P(a,b)落在直線x+y=3上”為事件C,則C的概率為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={1,2,3},B={2,3,4,5},則A∩B=
{2,3}
{2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={1,2,3,4},B={3,4,5},則滿足S⊆A且S∩B≠∅,試寫出滿足條件的所有集合S有
12
12
個.

查看答案和解析>>

同步練習冊答案