【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點(diǎn).
(1)求證:PD⊥平面ABE;
(2)若F為AB中點(diǎn), ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為-

【答案】
(1)解:證明:∵PA⊥底面ABCD,AB底面ABCD,∴PA⊥AB,

又∵底面ABCD為矩形,∴AB⊥AD,PA∩AD=A,PA平面PAD,AD平面PAD,

∴AB⊥平面PAD,又PD平面PAD,∴AB⊥PD,AD=AP,E為PD中點(diǎn),∴AE⊥PD,AE∩AB=A,AE平面ABE,AB平面ABE,∴PD⊥平面ABE.


(2)解:以A為原點(diǎn),以 為x,y,z軸正方向,建立空間直角坐標(biāo)系A(chǔ)﹣BDP,令|AB|=2,

則A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F(xiàn)(1,0,0), , ,M(2λ,2λ,2﹣2λ)

設(shè)平面PFM的法向量 ,即 ,

設(shè)平面BFM的法向量 ,

,解得


【解析】(I)證明AB⊥平面PAD,推出AB⊥PD,AE⊥PD,AE∩AB=A,即可證明PD⊥平面ABE.(II) 以A為原點(diǎn),以 為x,y,z軸正方向,建立空間直角坐標(biāo)系A(chǔ)﹣BDP,求出相關(guān)點(diǎn)的坐標(biāo),平面PFM的法向量,平面BFM的法向量,利用空間向量的數(shù)量積求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng),求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)上是減函數(shù),求的最小值;

(3)證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù).

)若函數(shù)處取得極值,且對(duì),恒成立,求實(shí)數(shù)的取值范圍.

)當(dāng)時(shí),試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圖像上有一最低點(diǎn),若圖像上各點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮為原來(lái)的倍,再向左平移個(gè)單位得,又的所有根從小到大依次相差個(gè)單位,則的解析式為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角A,B,C的對(duì)邊分別是且滿足

(1)求角B的大;

(2)若的面積為為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線)的焦點(diǎn)為,拋物線上存在一點(diǎn)到焦點(diǎn)的距離為3,且點(diǎn)在圓上.

(Ⅰ)求拋物線的方程;

(Ⅱ)已知橢圓)的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且離心率為.直線交橢圓,兩個(gè)不同的點(diǎn),若原點(diǎn)在以線段為直徑的圓的外部,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(文科學(xué)生做)已知數(shù)列滿足.

(1)求,的值,猜想并證明的單調(diào)性;

(2)請(qǐng)用反證法證明數(shù)列中任意三項(xiàng)都不能構(gòu)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某街道居委會(huì)擬在地段的居民樓正南方向的空白地段上建一個(gè)活動(dòng)中心,其中米.活動(dòng)中心東西走向,與居民樓平行. 從東向西看活動(dòng)中心的截面圖的下部分是長(zhǎng)方形,上部分是以為直徑的半圓. 為了保證居民樓住戶的采光要求,活動(dòng)中心在與半圓相切的太陽(yáng)光線照射下落在居民樓上的影長(zhǎng)不超過(guò)米,其中該太陽(yáng)光線與水平線的夾角滿足.

1)若設(shè)計(jì)米,米,問(wèn)能否保證上述采光要求?

2)在保證上述采光要求的前提下,如何設(shè)計(jì)的長(zhǎng)度,可使得活動(dòng)中心的截面面積最大?(注:計(jì)算中3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三名音樂(lè)愛(ài)好者參加某電視臺(tái)舉辦的演唱技能海選活動(dòng),在本次海選中有合格和不合格兩個(gè)等級(jí).若海選合格記1分,海選不合格記0分.假設(shè)甲、乙、丙海選合格的概率分別為,他們海選合格與不合格是相互獨(dú)立的.

1)求在這次海選中,這三名音樂(lè)愛(ài)好者至少有一名海選合格的概率;

2)記在這次海選中,甲、乙、丙三名音樂(lè)愛(ài)好者所得分之和為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案