【題目】已知函數(shù)f(x)=2sinωxcosωx+2 sin2ωx﹣ (ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移 個單位長度,再向上平移1個單位長度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在 上的最值.

【答案】
(1)解:由題意得:

f(x)=2sinωxcosωx+2 sin2ωx﹣

=sin2ωx﹣ cos2ωx

=2sin(2ωx﹣

由周期為π,得ω=1,得f(x)=2sin(2x﹣

由正弦函數(shù)的單調(diào)遞增區(qū)間得

2kπ﹣ ≤2x﹣ ≤2kπ+ ,得kπ﹣ ≤x≤kπ+ ,k∈Z,

所以函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ﹣ ,kπ+ ],k∈Z


(2)解:將函數(shù)f(x)的圖象向左平移 個單位,再向上平移1個單位,

得到y(tǒng)=2sin2x+1的圖象,所以g(x)=2sin2x+1

因為 ,所以 ,故2sinx∈[﹣1,2],

所以函數(shù)g(x)的最大值為3,最小值為0.


【解析】(1)根據(jù)二倍角的三角函數(shù)公式與輔助角公式化簡得f(x)=2sin(2ωx﹣ ),利用周期公式算出ω=1,得函數(shù)解析式為f(x)=2sin(2x﹣ ).再由正弦函數(shù)單調(diào)區(qū)間的公式,解關(guān)于x的不等式即可得到函數(shù)f(x)的單調(diào)增區(qū)間;(2)求出g(x)的解析式,根據(jù)函數(shù)的單調(diào)性求出函數(shù)在閉區(qū)間的最值即可.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知,證明:

(2)已知 ,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A、B、C所對的邊分別為a、b、c,且2acosB=3b﹣2bcosA.

(1)求 的值;
(2)設(shè)AB的中垂線交BC于D,若cos∠ADC= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是直角梯形,∠ABC=∠BCD= ,AB=BC=1,CD=2,PA⊥平面ABCD,E是PD的中點.

(1)求證:AE∥平面PBC;
(2)若直線AE與直線BC所成角等于 ,求二面角D﹣PB﹣A平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(選修4-4 坐標(biāo)系與參數(shù)方程) 以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)曲線C的參數(shù)方程為 (是參數(shù)),直線的極坐標(biāo)方程為.

1)求直線的直角坐標(biāo)方程和曲線C的普通方程;

2)設(shè)點P為曲線C上任意一點,求點P到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)已知函數(shù)),其中

(1)當(dāng)時,討論函數(shù)的單調(diào)性;

(2)若函數(shù)僅在處有極值,求的取值范圍;

(3)若對于任意的,不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}與{bn}滿足:①a1=a<0,b1=b>0,②當(dāng)k≥2時,若ak1+bk1≥0,則ak=ak1 , bk= ;若ak1+bk1<0,則ak= ,bk=bk1
(Ⅰ)若a=﹣1,b=1,求a2 , b2 , a3 , b3的值;
(Ⅱ)設(shè)Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an),求Sn(用a,b表示);
(Ⅲ)若存在n∈N* , 對任意正整數(shù)k,當(dāng)2≤k≤n時,恒有bk1>bk , 求n的最大值(用a,b表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}與{bn}滿足:①a1=a<0,b1=b>0,②當(dāng)k≥2時,若ak1+bk1≥0,則ak=ak1 , bk= ;若ak1+bk1<0,則ak= ,bk=bk1
(Ⅰ)若a=﹣1,b=1,求a2 , b2 , a3 , b3的值;
(Ⅱ)設(shè)Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an),求Sn(用a,b表示);
(Ⅲ)若存在n∈N* , 對任意正整數(shù)k,當(dāng)2≤k≤n時,恒有bk1>bk , 求n的最大值(用a,b表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(xa)(xb)(其中ab),若f(x)的圖象如圖所示,則函數(shù)g(x)=axb的圖象大致為(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案