【題目】已知全集為R,集合A={x|x2﹣2x>0},B={x|1<x<3},則RB= , A∩B= .
【答案】(﹣∞,1]∪[3,+∞);(2,3)
【解析】解:由A中不等式變形得:x(x﹣2)>0,
解得:x<0或x>2,即A=(﹣∞,0)∪(2,+∞),
∵全集為R,B=(1,3),
∴RB=(﹣∞,1]∪[3,+∞),
則A∩B=(2,3),
所以答案是:(﹣∞,1]∪[3,+∞);(2,3)
【考點(diǎn)精析】通過靈活運(yùn)用集合的交集運(yùn)算和集合的補(bǔ)集運(yùn)算,掌握交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立;對(duì)于全集U的一個(gè)子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對(duì)于全集U的補(bǔ)集,簡稱為集合A的補(bǔ)集,記作:CUA即:CUA={x|x∈U且x∈A};補(bǔ)集的概念必須要有全集的限制即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義域均為D的三個(gè)函數(shù)f(x),g(x),h(x)滿足條件:對(duì)任意x∈D,點(diǎn)(x,g(x)與點(diǎn)(x,h(x)都關(guān)于點(diǎn)(x,f(x)對(duì)稱,則稱h(x)是g(x)關(guān)于f(x)的“對(duì)稱函數(shù)”.已知g(x)= ,f(x)=2x+b,h(x)是g(x)關(guān)于f(x)的“對(duì)稱函數(shù)”,且h(x)≥g(x)恒成立,則實(shí)數(shù)b的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用數(shù)學(xué)歸納法證明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═ 時(shí),由n=k的假設(shè)到證明n=k+1時(shí),等式左邊應(yīng)添加的式子是( )
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)x,y滿足不等式組 ,若目標(biāo)函數(shù)z=kx+y僅在點(diǎn)(1,1)處取得最小值,則實(shí)數(shù)k的取值范圍是 ( )
A.(﹣1,+∞)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(﹣∞,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程選講]在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C1的參數(shù)方程為 為參數(shù)),曲線C2的極坐標(biāo)方程為 .
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上一點(diǎn),Q曲線C2上一點(diǎn),求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓C: + =1(a>b>0)的左焦點(diǎn)為F1(﹣1,0),離心率是e,點(diǎn)(1,e)在橢圓上.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M(2,0),過點(diǎn)F1的直線交C于A,B兩點(diǎn),直線MA,MB與直線x=﹣2分別交于P,Q兩點(diǎn),求△MPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b∈R且a<b,若a3eb=b3ea , 則下列結(jié)論中一定正確的個(gè)數(shù)是( ) ①a+b>6;②ab<9;③a+2b>9;④a<3<b.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a、b∈M,
(1)證明:| a+ b|< ;
(2)比較|1﹣4ab|與2|a﹣b|的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李冶(1192﹣1279),真定欒城(今屬河北石家莊市)人,金元時(shí)期的數(shù)學(xué)家、詩人、晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑,正方形的邊長等,其中一問:現(xiàn)有正方形方田一塊,內(nèi)部有一個(gè)圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計(jì)算)( )
A.10步、50步
B.20步、60步
C.30步、70步
D.40步、80步
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com