(本小題滿分13分)
已知函數(shù).
(1) 若函數(shù)的定義域和值域均為,求實數(shù)的值;
(2) 若在區(qū)間上是減函數(shù),且對任意的,
總有,求實數(shù)的取值范圍;
(3) 若上有零點,求實數(shù)的取值范圍.

(1);(2);(3)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè),且,定義在區(qū)間內(nèi)的函數(shù)是奇函數(shù).
(1)求的取值范圍;
(2)討論函數(shù)的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(附加題)本小題滿分10分
已知是定義在上單調(diào)函數(shù),對任意實數(shù)有:時,.
(1)證明:;
(2)證明:當(dāng)時,;
(3)當(dāng)時,求使對任意實數(shù)恒成立的參數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(16分)已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時,
(1)當(dāng)時,求函數(shù)的解析式;
(2)若函數(shù)為單調(diào)遞減函數(shù);
①直接寫出的范圍(不必證明);
②若對任意實數(shù),恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)設(shè)函數(shù)f(x)=.
(1)求f(x)的定義域;(2)判斷f(x)的奇偶性;(3)求證:f+f(x)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司為了實現(xiàn)1000萬元利潤的目標(biāo),準(zhǔn)備制定一個激勵銷售人員的獎勵方案:在銷售利潤達(dá)到10萬元時,按銷售利潤進(jìn)行獎勵,且獎金(單位:萬元)隨銷售利潤(單位:萬元)的增加而增加,但獎金總數(shù)不超過5萬元,同時獎金不能超過利潤的%.現(xiàn)有三個獎勵模型:,分析與推導(dǎo)哪個函數(shù)模型能符合該公司的要求?并給予證明.(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
(1)證明:函數(shù)上是減函數(shù),在[,+∞)上是增函數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)的值
(2)若滿足f(x) +f(x-8)≤2 求x的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知定義域為的單調(diào)函數(shù)圖關(guān)于點對稱,當(dāng)時,.
(1)求的解析式;
(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案